11.函數(shù)f(x)=2sin(πx)-$\frac{1}{1-x}$,x∈[-2,4]的所有零點之和為(  )
A.2B.4C.6D.8

分析 作出y=2sinπx與y=$\frac{1}{1-x}$的函數(shù)圖象,根據(jù)圖象的交點個數(shù)和對稱性得出答案.

解答 解:令f(x)=0得2sin(πx)=$\frac{1}{1-x}$,
作出y=2sinπx與y=$\frac{1}{1-x}$的函數(shù)圖象,如圖所示:

由圖象可知兩圖象在[-2,4]上共有8個交點,∴f(x)共有8個零點,
又兩圖象都關(guān)于點(1,0)對稱,
∴8個交點兩兩關(guān)于點(1,0)對稱,
∴8個零點之和為4×2=8.
故選D.

點評 本題考查了函數(shù)零點與函數(shù)圖象的關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.橢圓的中心在原點,一個焦點為$F({0,\sqrt{50}})$且該橢圓被直線y=3x-2截得的弦的中點的橫坐標(biāo)為$\frac{1}{2}$,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知關(guān)于x的不等式kx2-2x+6k<0(k≠0)
(1)若不等式的解集是{x|x<-3或x>-2},求k的值;
(2)若不等式的解集是R,求k的取值范圍;
(3)若不等式的解集為∅,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.異面直線a與b所成的角為50°,P為空間一點,則過P點且與a,b所成的角都是50°的直線有2條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.我國南北朝時期數(shù)學(xué)家、天文學(xué)家祖暅提出了著名的祖暅原理:“冪勢既同,則積不容異”.“勢”即是高,“冪”即是面積.意思是說如果兩等高的幾何體在同高處截得兩幾何體的截面積相等,那么這兩個幾何體的體積相等.已知某不規(guī)則幾何體與如圖所對應(yīng)的幾何體滿足:“冪勢同”,則該不規(guī)則幾何體的體積為(圖中的網(wǎng)格紙中的小正方形的邊長為1)( 。
A.4B.8C.16D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,已知AB=4,且tanAtanB=$\frac{3}{4}$,則△ABC的面積的最大值為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求函數(shù)f(x)=sin(x+$\frac{π}{6}$)在x取得何值時達(dá)到最大值?在x取得何值時達(dá)到最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)實系數(shù)一元二次ax2+bx+c=0的兩根是x1、x2,下列命題中,假命題的序號是(1)(2)
(1)方程可能有兩個相等的虛根
(2)ax2+bx+c=(x-x1)(x-x2
(3)$x_1^2{x_2}+{x_1}x_2^2=-\frac{bc}{a^2}$
(4)若b2-4ac<0,則x1-x2一定是純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求證:
(1)a2+b2+c2≥ab+ac+bc;  
(2)$\sqrt{6}$+$\sqrt{7}$>2$\sqrt{2}$+$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊答案