【題目】被嘉定著名學(xué)者錢大昕贊譽(yù)為“國朝算學(xué)第一”的清朝數(shù)學(xué)家梅文鼎曾創(chuàng)造出一類“方燈體”,“燈者立方去其八角也”,如圖所示,在棱長為的正方體中,點(diǎn)為棱上的四等分點(diǎn).
(1)求該方燈體的體積;
(2)求直線和的所成角;
(3)求直線和平面的所成角.
【答案】(1);(2);(3).
【解析】
(1)計(jì)算出八個角(即八個三棱錐)的體積之和,然后利用正方體的體積減去這八個角的體積之和即可得出方燈體的體積;
(2)以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用空間向量法求出直線和的所成角;
(3)求出平面的法向量,利用空間向量法求出直線和平面的所成角的正弦值,由此可得出和平面的所成角的大小.
(1)在棱長為的正方體中,點(diǎn)為棱上的四等分點(diǎn),
該方燈體的體積:;
(2)以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,
、、、,,,
設(shè)直線和的所成角為,則,
直線和的所成角為;
(3),,,,
設(shè)平面的法向量,
則,得,取,得,
設(shè)直線和平面的所成角為,則,
直線和平面的所成角為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),其中為直線的傾斜角.以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn)且與曲線相交于兩點(diǎn),求兩點(diǎn)間的距離的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的不等式,下列結(jié)論正確的是( )
A.當(dāng)時(shí),不等式的解集為
B.當(dāng),時(shí),不等式的解集為
C.當(dāng)時(shí),不等式的解集可以為的形式
D.不等式的解集恰好為,那么
E.不等式的解集恰好為,那么
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x-3|-|x+1|.
(1)求f(x)的值域;
(2)解不等式:f(x)>0;
(3)若直線y=a與f(x)的圖像無交點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形, 在上,且面.
(1)求證: 是的中點(diǎn);
(2)在上是否存在點(diǎn),使二面角為直角?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在研究函數(shù)f(x)=(x∈R)時(shí),分別給出下面幾個結(jié)論:
①等式f(-x)=-f(x)在x∈R時(shí)恒成立;
②函數(shù)f(x)的值域?yàn)椋?/span>-1,1);
③若x1≠x2,則一定有f(x1)≠f(x2);
④方程f(x)=x在R上有三個根.
其中正確結(jié)論的序號有______.(請將你認(rèn)為正確的結(jié)論的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的首項(xiàng),是數(shù)列的前項(xiàng)和,且滿足.
(1)若數(shù)列是等差數(shù)列,求的值;
(2)確定的取值集合,使時(shí),數(shù)列是遞增數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高一、高二、高三的三個年級學(xué)生人數(shù)如下表
高三 | 高二 | 高一 | |
女生 | 100 | 150 | z |
男生 | 300 | 450 | 600 |
按年級分層抽樣的方法評選優(yōu)秀學(xué)生50人,其中高三有10人.
(1)求z的值;
(2)用分層抽樣的方法在高一中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2人,求至少有1名女生的概率;
(3)用隨機(jī)抽樣的方法從高二女生中抽取8人,經(jīng)檢測她們的得分如下:9.4,8.6,9.2, 9.6,8.7,9.3,9.0,8.2,把這8人的得分看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過0.5的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com