已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的長、短軸端點分別為A、B,從橢圓上一點M(在x軸上方)向x軸作垂線,恰好通過橢圓的左焦點F1,
AB
OM

(1)求橢圓的離心率e;
(2)設(shè)Q是橢圓上任意一點,F(xiàn)1、F2分別是左、右焦點,求∠F1QF2的取值范圍.
依題意,作圖如圖:
(1)設(shè)F1(-c,0),則xM=-c,yM=
b2
a
,
∴kOM=-
b2
ac

∵kAB=-
b
a
,
OM
AB
,
∴-
b2
ac
=-
b
a
,
∴b=c,故e=
c
a
=
2
2

(1)設(shè)|F1Q|=r1,|F2Q|=r2,∠F1QF2=θ,
∴r1+r2=2a,|F1F2|=2c.
cosθ=
r12+
r22
-4c2
2r1r2
=
(r1+r2)2-2r1r2-4c2
2r1r2

=
2b2
r1r2
-1≥
2b2
(
r1+r2
2
)2
-1=0,
當(dāng)且僅當(dāng)r1=r2時,cosθ=0,
∴θ∈[0,
π
2
].
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P為橢圓
x2
16
+
y2
12
=1
上動點,F(xiàn)為橢圓的右焦點,點A的坐標為(3,1),則|PA|+2|PF|的最小值為(  )
A.10+
2
B.10-
2
C.5D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點且垂直于x軸的直線與橢圓交于M、N兩點,以MN為直徑的圓恰好過左焦點,則橢圓的離心率等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過橢圓左焦點F且傾斜角為60°的直線交橢圓于A,B兩點,若|FA|=
3
2
|FB|,則橢圓的離心率等于( 。
A.
2
3
B.
2
5
C.
1
2
D.
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC的兩個頂點A,B的坐標分別是(0,-1),(0,1),且AC,BC所在直線的斜率之積等于m(m≠0).
(1)求頂點C的軌跡E的方程,并判斷軌跡E為何種圓錐曲線;
(2)當(dāng)m=-
1
2
時,過點F(1,0)的直線l交曲線E于M,N兩點,設(shè)點N關(guān)于x軸的對稱點為Q(M,Q不重合)試問:直線MQ與x軸的交點是否為定點?若是,求出定點,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓
x2
20
+
y2
k
=1
的焦距為6,則k的值為( 。
A.13或27B.11或29C.15或28D.10或26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點,AB是過F1的弦,則△ABF2的周長是(  )
A.2aB.4aC.8aD.2a+2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點為F,C與過原點的直線相交于A,B兩點,連接了AF,BF,若|AB|=10,|BF|=8,cos∠ABF=
4
5
,則C的離心率為( 。
A.
3
5
B.
5
7
C.
4
5
D.
6
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知△ABC的頂點B,C在橢圓
x2
3
+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是( 。
A.2
3
B.6C.4
3
D.12

查看答案和解析>>

同步練習(xí)冊答案