分析 (I)連結(jié)BD,則E為BD的中點,利用中位線定理得出EF∥PD,故而EF∥面PCD;
(II)取AB中點O,連接PO,DO,得出PO⊥平面ABCD,于是,∠PDO為DP與平面ABCD所成角,求出OP,DP,得直線DP與平面ABCD所成角的正弦值.
解答 (Ⅰ)證明:因為E為AC中點,所以DB與AC交于點E.
因為E,F(xiàn)分別為AC,BP中點,所以EF是△BDP的中位線,
所以EF∥DP.
又DP?平面PCD,EF?平面PCD,
所以EF∥平面PCD.
(Ⅱ)解:取AB中點O,連接PO,DO.
∵△PAB為正三角形,∴PO⊥AB,
又∵平面ABCD⊥平面PAB
∴PO⊥平面ABCD,∴DP在平面ABCD內(nèi)的射影為DO,∠PDO為DP與平面ABCD所成角,
OP=$\sqrt{3}$,DP=$\sqrt{5}$,在Rt△DOP中,sin∠PDO=$\frac{\sqrt{15}}{5}$,
∴直線DP與平面ABCD所成角的正弦值為$\frac{\sqrt{15}}{5}$.
點評 本題考查了線面平行的判定,線面角的計算,作出線面角并證明是解題關(guān)鍵,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | b<a<c | B. | a>b>c | C. | a<b<c | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $3+2\sqrt{2}$ | B. | $3+\sqrt{2}$ | C. | $2+\sqrt{2}$ | D. | $2+2\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com