18.設(shè)集合P={2,3a},Q={a,b},若P∩Q={1},則P∪Q 等于( 。
A.{2,0}B.{2,1,0}C.{3,2,0}D.{3,2,1,0}

分析 由題意:P∩Q={1},那么:1∈P且1∈Q,分別對a=1,和b=1去討論,集合P={2,3},是否含有元素1,確定出集合P,集合Q,從而求P∪Q.

解答 由題意:P∩Q={1},那么:1∈P且1∈Q,當(dāng)a=1時(shí),集合P={2,3},沒有元素1,不符合題意,
當(dāng)b=1時(shí),集合P={2,3a},要含有元素1,即3a=1,解得a=0,那么可得:P={2,1},Q={0,1},
所以:P∪Q={0,1,2}
故選:B.

點(diǎn)評 本題考查了交、并集及其運(yùn)算,是一道基本題型,熟練掌握交、并集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直線l的參數(shù)方程是$\left\{\begin{array}{l}x=t-2\\ y=2-2t\end{array}\right.(t$為參數(shù)),曲線C的極坐標(biāo)方程為$ρ=2\sqrt{2}sin(θ+\frac{π}{4})$,直線l與曲線C交于A、B零點(diǎn),與y軸交于點(diǎn)P.
(1)求曲線C的參數(shù)方程;
(2)過曲線C上任意一點(diǎn)P作與直線l夾角為30°的直線,角l于點(diǎn)A,求|PA|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)數(shù)列{an}滿足a2+a4=4,點(diǎn)Pn(n,an)對任意的n∈N+,都有向量$\overrightarrow{{P_n}{P_{n+1}}}=(1,-2)$,則數(shù)列{an}的前n項(xiàng)和Sn=7n-n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,a=2,b=3,c=4,則最大角的余弦值為( 。
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.$\frac{7}{8}$D.-$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=sin(x+18°)-cos(x+48°)的值域?yàn)椋ā 。?table class="qanwser">A.$[{-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}}]$B.[-1,1]C.$[{-\sqrt{3},\sqrt{3}}]$D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.由甲、乙、丙3人組成的工作小組共獲得了4萬元獎(jiǎng)金,現(xiàn)在他們決定用如下方法分配獎(jiǎng)金:甲乙二人格子隨機(jī)從獎(jiǎng)金中取出1萬元或2萬元作為自己的獎(jiǎng)金,他們?nèi)〉?萬元的概率均為P1,取得2萬元的概率均為P2,剩下的獎(jiǎng)金全部歸丙.
(1)若P1=P2=$\frac{1}{2}$,求丙獲得1萬元獎(jiǎng)金的概率;
(2)若甲、乙、丙獲得獎(jiǎng)金的期望值相等,求P1,P2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.等差數(shù)列{an},{bn}的前n項(xiàng)分別為Sn和Tn,若$\frac{{S{\;}_n}}{T_n}$=$\frac{4n+1}{3n-1}$,則$\frac{a_7}{b_7}$=$\frac{53}{38}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.給出如下四個(gè)命題:
①若“p或q”為真命題,則p、q均為真命題;
②命題“若x≥4且y≥2,則x+y≥6”的否命題為“若x<4且y<2,則x+y<6”;
③在△ABC中,“A>30°”是“sinA>$\frac{1}{2}$”的充要條件.
④命題“?x0∈R,e${\;}^{{x}_{0}}$≤0”是真命題.
其中正確的命題的個(gè)數(shù)是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知正數(shù)x,y滿足x+y=4,則log2x+log2y的最大值是( 。
A.-4B.4C.-2D.2

查看答案和解析>>

同步練習(xí)冊答案