(本小題滿分14分)已知函數(shù)
(1)若函數(shù)上為增函數(shù),求正實(shí)數(shù)的取值范圍;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),求證:對(duì)大于的任意正整數(shù),都有。
解:(1)∵      ∴            ......1
∵ 函數(shù)上為增函數(shù) ∴ 對(duì)恒成立
對(duì)恒成立,即對(duì)恒成立∴   4分
(2),   
當(dāng)時(shí),對(duì)恒成立,的增區(qū)間為 ......5     
當(dāng)時(shí),,    
的增區(qū)間為,減區(qū)間為()......6 
(3)當(dāng)時(shí),,故上為增函數(shù)。
當(dāng)時(shí),令,則,故               ......8
∴ ,即   
∴                
第一問(wèn)利用求導(dǎo)數(shù),利用函數(shù)上為增函數(shù)
對(duì)恒成立
來(lái)解決
第二問(wèn),   
當(dāng)時(shí),對(duì)恒成立,的增區(qū)間為  
當(dāng)時(shí),,    的增區(qū)間為,減區(qū)間為().
第三問(wèn)a=1時(shí),,,故上為增函數(shù)。
當(dāng)n>1時(shí),令,則x>1,故
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題14分)已知函數(shù),當(dāng)時(shí),有極大值
(1)求的值;(2)求函數(shù)的極小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)y=x2㏑x的單調(diào)遞減區(qū)間為
A.(1,1]B.(0,1]C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
已知函數(shù)
(1)若的極值點(diǎn),求值;
(2)若函數(shù)上是增函數(shù),求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分) 設(shè)函數(shù).
(Ⅰ)若,求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),若函數(shù)上是增函數(shù),求的取值范圍;
(Ⅲ)若,不等式對(duì)任意恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
已知函數(shù),(1)求函數(shù)極值.(2)求函數(shù)上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(文)(本小題14分)已知函數(shù)為實(shí)數(shù)).
(1)當(dāng)時(shí), 求的最小值;
(2)若上是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx+c在x=與x=1時(shí)都取得極值.
(1)求a、b的值與函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì),不等式f(x)<c2恒成立,求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案