3.若圓x2+y2=1與直線$\left\{\begin{array}{l}{x=a+t}\\{y=2t}\end{array}\right.$(參數(shù)t∈R)相切,則實(shí)數(shù)a=±$\frac{\sqrt{5}}{2}$.

分析 求出直線的普通方程,利用圓心到直線的距離d=$\frac{|-2a|}{\sqrt{5}}$=1,即可求出實(shí)數(shù)a.

解答 解:直線$\left\{\begin{array}{l}{x=a+t}\\{y=2t}\end{array}\right.$(參數(shù)t∈R),普通方程為2x-y-2a=0,
∵圓x2+y2=1與直線$\left\{\begin{array}{l}{x=a+t}\\{y=2t}\end{array}\right.$(參數(shù)t∈R)相切,
∴圓心到直線的距離d=$\frac{|-2a|}{\sqrt{5}}$=1,∴a=±$\frac{\sqrt{5}}{2}$.
故答案為:±$\frac{\sqrt{5}}{2}$.

點(diǎn)評 本題考查直線的參數(shù)方程轉(zhuǎn)化為普通方程,考查直線與圓的位置關(guān)系的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)y=f(x)是定義在R+上的函數(shù),并且滿足下面三個(gè)條件:(1)對任意正數(shù)x、y,都有f(xy)=f(x)+f(y);(2)當(dāng)x>1時(shí),f(x)<0;(3)f(3)=-1,
(1)求f(1)、$f(\frac{1}{9})$的值;
(2)判斷函數(shù)的單調(diào)性并證明
(3)如果不等式f(x)+f(2-x)<2成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知等邊三角形的一個(gè)頂點(diǎn)坐標(biāo)是($\frac{\sqrt{3}}{4}$,0),另外兩個(gè)頂點(diǎn)在拋物線y2=$\sqrt{3}$x上,則這個(gè)等邊三角形的邊長為( 。
A.3B.6C.2$\sqrt{3}$±3D.2$\sqrt{3}$+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.等軸雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,C與拋物線y2=16x的準(zhǔn)線交于A,B兩點(diǎn),若|AB|=4,則C的實(shí)軸長為(  )
A.4B.2C.4$\sqrt{3}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.為了得到函數(shù)y=2sin(3x+$\frac{π}{6}$)的圖象,只需把y=2sinx的圖象上所有的點(diǎn)( 。
A.向右平移$\frac{π}{6}$個(gè)長度單位,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變)
B.向左平移$\frac{π}{18}$個(gè)長度單位,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{3}$倍(縱坐標(biāo)不變)
C.向右平移$\frac{π}{18}$個(gè)長度單位,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變)
D.向左平移$\frac{π}{6}$個(gè)長度單位,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{3}$倍(縱坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知兩個(gè)不相等的非零向量$\overrightarrow{a}$,$\overrightarrow$,兩組向量均由$\overrightarrow{{x}_{1}}$,$\overrightarrow{{x}_{2}}$,$\overrightarrow{{x}_{3}}$,$\overrightarrow{{x}_{4}}$和$\overrightarrow{{y}_{1}}$,$\overrightarrow{{y}_{2}}$,$\overrightarrow{{y}_{3}}$,$\overrightarrow{{y}_{4}}$均由2個(gè)$\overrightarrow{a}$和2個(gè)$\overrightarrow$排列而成,記S=$\overrightarrow{{x}_{1}}$•$\overrightarrow{{y}_{1}}$+$\overrightarrow{{x}_{2}}$•$\overrightarrow{{y}_{2}}$+$\overrightarrow{{x}_{3}}$•$\overrightarrow{{y}_{3}}$+$\overrightarrow{{x}_{4}}$•$\overrightarrow{{y}_{4}}$,Smin表示S所有可能取值中的最小值,則下列命題中正確的個(gè)數(shù)為( 。
①S有3個(gè)不同的值;
②若$\overrightarrow{a}$⊥$\overrightarrow$,則Smin與|$\overrightarrow$|無關(guān);
③若$\overrightarrow{a}$∥$\overrightarrow$,則Smin與|$\overrightarrow$|無關(guān);
④若|$\overrightarrow$|=2|$\overrightarrow{a}$,Smin=4${|\overrightarrow{a}|}^{2}$,則$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在數(shù)列{an}中,a1=1,an•an+1=-2(n=1,2,3,…),那么a8等于-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦點(diǎn)分別為F1,F(xiàn)2,且經(jīng)過點(diǎn)$P({0,\sqrt{5}})$,離心率為$\frac{2}{3}$,A為直線x=4上的動(dòng)點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)點(diǎn)B在橢圓C上,滿足OA⊥OB,求線段AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.等差數(shù)列{an}的前n項(xiàng)和為Sn,且S5=-15,a2+a5=-2,則公差d等于( 。
A.5B.4C.3D.2

查看答案和解析>>

同步練習(xí)冊答案