(本題滿分10分)
已知函數(shù)f (x)=| xa | + | x + 2 |(a為常數(shù),且aR).
(Ⅰ)若函數(shù)f (x)的最小值為2,求a的值;
(Ⅱ)當a=2時,解不等式f (x)6.
(1) a=0或a=-4(2) [-3,3]

試題分析:解:(Ⅰ)f (x)=|xa|+|x+2|=| ax |+|x+2|
≥|axx+2|=|a+2|,
由|a+2|=2,解得a=0或a=-4.                               ……5分
(Ⅱ)f (x)= |x-2|+|x+2|.
x<-2時,不等式為2-xx-2≤6,其解為-3≤x<-2;
當-2≤x<2時,不等式為2-xx+2≤6恒成立,其解為-2≤x<2;
x≥2時,不等式為x-2+x+2≤6,其解為2≤x≤3;
所以不等式f (x)≤6的解集為[-3,3].                          ……10分
如有其它解法,相應給分.
點評:零點分段論是解決多個絕對值的函數(shù)的一般方法,同時能利用分段函數(shù)的性質(zhì),求解最值,屬于基礎題。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,則
A.2B.C.-2D.-

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知為定義在上的奇函數(shù),當時, 
(1)證明函數(shù)是增函數(shù)(2)求在(-1,1)上的解析式

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù),則________._

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知恰有3個不同的零點,則實數(shù)的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)若對任意的,且恒成立,則實數(shù)a的取值范圍為          。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是定義在上的偶函數(shù),當時, 。
(1)用分段函數(shù)形式寫出上的解析式;   
(2)畫出函數(shù)的大致圖象;并根據(jù)圖像寫出的單調(diào)區(qū)間;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù),則的值為   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)(     )
A.16B.C.4D.

查看答案和解析>>

同步練習冊答案