15.已知隨機(jī)變量X服從正態(tài)分布N(1,σ2),且P(-1≤X≤1)=0.4,則P(X>3)=0.1.

分析 隨機(jī)變量X服從正態(tài)分布N(1,σ2),得到曲線關(guān)于x=1對(duì)稱,根據(jù)曲線的對(duì)稱性得到結(jié)果.

解答 解:隨機(jī)變量X服從正態(tài)分布N(1,σ2),
∴曲線關(guān)于x=1對(duì)稱,
∵P(-1≤X≤1)=0.4,
∴P(X>3)=P(X<-1)=0.5-P(-1≤X≤1)=0.1,
故答案為:0.1.

點(diǎn)評(píng) 本題主要考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義、函數(shù)圖象對(duì)稱性的應(yīng)用等基礎(chǔ)知識(shí),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.不等式3x-4y+6<0表示的平面區(qū)域在直線3x-4y+6=0的( 。
A.右上方B.右下方C.左上方D.左下方

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知三棱錐S-ABC各頂點(diǎn)都在球O的球面上,若SA=SB=SC=1,且SA、SB、SC兩兩垂直,則球O的表面積為3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{lnx+a}{x}$(a∈R),g(x)=$\frac{1}{x}$.
(1)求f(x)的單調(diào)區(qū)間與極值;
(2)若函數(shù)f(x)的圖象與函數(shù)g(x)的圖象在區(qū)間(0,e2]上有公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.從集合{1,2,3,…,11}中任意取兩個(gè)元素作為橢圓$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1方程的m和n,則能構(gòu)成焦點(diǎn)在x軸上的橢圓個(gè)數(shù)為( 。
A.55B.90C.110D.121

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=-aln(x+1)+$\frac{a+1}{x+1}$-a-1(a∈R)
(1)當(dāng)a=-$\frac{1}{3}$時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)已知函數(shù)g(x)=(1-ax)ln(1+x)-x,若對(duì)任意x∈(0,1]都有g(shù)(x)>0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某小賣部為了研究熱茶銷售量y(杯)與氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4天熱茶銷售量與當(dāng)天氣溫,并制作了對(duì)照表:
氣溫°C1496-5
茶銷售量(杯)34444874
由表中數(shù)據(jù)算得線性回歸方程$\widehaty=bx+a$中b≈-2
(1)求y對(duì)x的線性回歸方程;
(2)預(yù)測當(dāng)氣溫為-1℃時(shí),熱茶銷售量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,已知在一個(gè)二面角的棱上有兩個(gè)點(diǎn)A、B,線段AC、BD分別在這個(gè)二面角的兩個(gè)面內(nèi),并且都垂直于棱AB,AB=4cm,AC=6cm,BD=8cm,CD=2$\sqrt{17}$cm,則這個(gè)二面角的度數(shù)為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,PB⊥面ABCD,BA=BD=$\sqrt{2}$,AD=2,E,F(xiàn)分別是棱AD,PC的中點(diǎn).
(1)證明:EF∥平面PAB;
(2)若二面角P-AD-B為60°,求直線EF與平面PBC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案