精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在三棱柱中,平面底面,,,,的中點,側棱

(1)求證:平面

(2)求直線與平面所成角的余弦值.

【答案】(1)見解析;(2).

【解析】試題分析: (1)由平面平面,平面平面,可推得平面,進而推得,,根據線面垂直的判定定理即可證得;(2)∵面,∴在面上的射影上,∴為直線與面所成的角.求出CH和,代入計算即可.

試題解析:(1)證明:∵,的中點,∴,又平面平面,平面平面,∴平面,又平面,∴

,,∴

(2)∵面,∴在面上的射影上,∴為直線與面所成的角.過,連,

中,

中,

∴在中,

∴直線與面所成的角的余弦值為

點睛:本題考查的是線面垂直的判定定理的應用以及求線面角,屬于中檔題目. 判定直線和平面垂直的方法:①定義法.②利用判定定理:一條直線和一個平面內的兩條相交直線都垂直,則該直線和此平面垂直.③推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條直線也垂直這個平面.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,離心率.以兩個焦點和短軸的兩個端點為頂點的四邊形的周長為8,面積為

(Ⅰ)求橢圓的方程;

(Ⅱ)若點為橢圓上一點,直線的方程為,求證:直線與橢圓有且只有一個交點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x﹣[x],其中[x]表示不超過實數x的最大整數.若關于x的方程f(x)=kx+k有三個不同的實根,則實數k的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓的圓心在直線上,且與另一條直線相切于點.

(1)求圓的標準方程;

(2)已知,在圓上運動,求線段的中點的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對某校高一年級學生參加社區(qū)服務次數進行統(tǒng)計,隨機抽取名學生作為樣本,得到這名學生參加社區(qū)服務的次數.根據此數據作出了頻數與頻率的統(tǒng)計表和頻率分布直方圖如下:

分組

頻數

頻率

10

0.25

25

2

0.05

合計

1

(1)求出表中及圖中的值;

(2)試估計他們參加社區(qū)服務的平均次數;

(3)在所取樣本中,從參加社區(qū)服務的次數不少于20次的學生中任選2人,求至少1人參加社區(qū)服務次數在區(qū)間內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果數據x1 , x2 , …,xn的平均數是 ,方差是S2 , 則2x1+3,2x2+3,…,2xn+3的平均數和方差分別是(
A. 和S
B.2 +3和4S2
C. 和S2
D. 和4S2+12S+9

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數y=f(x)(x∈R)的圖象過點(0,﹣3),且f(x)>0的解集(1,3).
(1)求f(x)的解析式;
(2)求函數 的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直三棱柱 中, , , 是棱上的動點.

證明: ;

若平面分該棱柱為體積相等的兩個部分,試確定點的位置,并求二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是函數yAsin(ωxφ)( )

像的一部分.為了得到這個函數的圖像,只要將y=sin x(x∈R)的圖像上所有的點( )

A. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的,縱坐標不變.

B. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變.

C. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的,縱坐標不變.

D. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變.

查看答案和解析>>

同步練習冊答案