【題目】誠(chéng)信是立身之本,道德之基,某校學(xué)生會(huì)創(chuàng)設(shè)了“誠(chéng)信水站”,既便于學(xué)生用水,又推進(jìn)誠(chéng)信教育,并用“”表示每周“水站誠(chéng)信度”,為了便于數(shù)據(jù)分析,以四周為一周期,下表為該水站連續(xù)十二周(共三個(gè)周期)的誠(chéng)信數(shù)據(jù)統(tǒng)計(jì):
第一周 | 第二周 | 第三周 | 第四周 | |
第一個(gè)周期 | ||||
第二個(gè)周期 | ||||
第三個(gè)周期 |
(1)計(jì)算表中十二周“水站誠(chéng)信度”的平均數(shù);
(2)分別從表中每個(gè)周期的4個(gè)數(shù)據(jù)中隨機(jī)抽取1個(gè)數(shù)據(jù),設(shè)隨機(jī)變量表示取出的3個(gè)數(shù)中“水站誠(chéng)信度”超過(guò)的數(shù)據(jù)的個(gè)數(shù),求隨機(jī)變量的分布列和期望;
(3)已知學(xué)生會(huì)分別在第一個(gè)周期的第四周末和第二個(gè)周期的第四周末各舉行了一次“以誠(chéng)為本”的主題教育活動(dòng),根據(jù)已有數(shù)據(jù),說(shuō)明兩次主題教育活動(dòng)的宣傳效果,并根據(jù)已有數(shù)據(jù)陳述理由.
【答案】(1)(2)見(jiàn)解析(3)兩次活動(dòng)效果均好.詳見(jiàn)解析
【解析】
(1)利用平均數(shù)公式能求出表中十二周“水站誠(chéng)信度”的平均數(shù);(2)隨機(jī)變量的可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出的分布列和數(shù)學(xué)期望;(3)根據(jù)后繼一周都有提升可得兩次活動(dòng)效果均好.
(1)表中十二周“水站誠(chéng)信度”的平均數(shù):
.
(2)隨機(jī)變量的可能取值為0,1,2,3,
,,
,,
∴的分布列為:
0 | 1 | 2 | 3 | |
.
(3)兩次活動(dòng)效果均好.
理由:活動(dòng)舉辦后,“水站誠(chéng)信度”由和到看出,后繼一周都有提升.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足對(duì)任意的都有,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,不等式對(duì)任意的正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),點(diǎn)是函數(shù)圖象上不同的兩點(diǎn),則為坐標(biāo)原點(diǎn))的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:
甲說(shuō):“是或作品獲得一等獎(jiǎng)”; 乙說(shuō):“ 作品獲得一等獎(jiǎng)”;
丙說(shuō):“ 兩件作品未獲得一等獎(jiǎng)”; 丁說(shuō):“是作品獲得一等獎(jiǎng)”.
評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)在圓柱的底面圓上,為圓的直徑.
(1)求證:;
(2)若圓柱的體積為,,,求異面直線與所成的角(用反三角函數(shù)值表示結(jié)果).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),動(dòng)點(diǎn)到直線的距離與動(dòng)點(diǎn)到點(diǎn)的距離之比為.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過(guò)點(diǎn)作任一直線交曲線于,兩點(diǎn),過(guò)點(diǎn)作的垂線交直線于點(diǎn),求證:平分線段.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a、b、c為的三邊長(zhǎng),直線l的方程,圓.
(1)若為直角三角形,c為斜邊長(zhǎng),且直線l與圓M相切,求c的值;
(2)若為正三角形,對(duì)于直線l上任意一點(diǎn)P,在圓M上總存在一點(diǎn)Q,使得線段的長(zhǎng)度為整數(shù),求c的取值范圍;
(3)點(diǎn),,,,設(shè)E、F、G、H四點(diǎn)到直線l的距離之和為S,求S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)若曲線在處切線的斜率為,求此切線方程;
(2)若有兩個(gè)極值點(diǎn),求的取值范圍,并證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com