△ABC中,角A、B、C的對邊分別為a,b,c,且b2+c2-a2=
1
2
bc

(Ⅰ)求cosA的值;
(Ⅱ)求cos2
A
2
+cos2A
的值.
分析:(Ⅰ)通過b2+c2-a2=
1
2
bc
根據(jù)余弦定理可求出cosA的值.
(Ⅱ)利用二倍角公式對cos2
A
2
+cos2A
化簡,把(Ⅰ)中cosA的值代入即可得到答案.
解答:解:(Ⅰ)∵b2+c2-a2=
1
2
bc

b2+c2-a2
2bc
=
1
4

cosA=
1
4

(Ⅱ)∵cos2
A
2
+cos2A
=
1
2
+
1
2
cosA+2cos2A-1

=2cos2A+
1
2
cosA-
1
2

由(Ⅰ)知cosA=
1
4
,代入上式得cos2
A
2
+cos2A
=2(
1
4
2+
1
2
×
1
4
-
1
2
=-
1
4
點(diǎn)評:本題主要考查了余弦定理和二倍角公式的應(yīng)用.余弦定理是揭示三角形邊角關(guān)系的重要定理,直接運(yùn)用它可解決一類已知三角形兩邊及夾角求第三邊或者是已知三個(gè)邊求角的問題,若對余弦定理加以變形并適當(dāng)移于其它知識(shí),則使用起來更為方便、靈活.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺(tái)區(qū)一模)在△ABC中,角A,B,C所對的邊分別為a,b,c,且asinB-bcosC=ccosB.
(Ⅰ)判斷△ABC的形狀;
(Ⅱ)若f(x)=
1
2
cos2x-
2
3
cosx+
1
2
,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•德州一模)已知函數(shù)f(x)=
3
sinxcosx-cos2x+
1
2
(x∈R)

(I)求函數(shù)f(x)的最小正周期及在區(qū)間[0,
12
]
上的值域;
(Ⅱ)在△ABC中,角A、B、C所對的邊分別是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=2
,面積S△ABC=3,求邊長a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)在△ABC中,角A,B,C的對邊分別為a,b,c,且a=2bcosC,b+c=3a.求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•石景山區(qū)一模)在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大;
(Ⅱ)若A=
π4
,a=2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,角A、B、C所對的邊長分別為a、b、c,向量
m
=(1,cosB),
n
=(sinB,-
3
)
,且
m
n

(1)求角B的大;
(2)若△ABC面積為
3
3
2
,3ac=25-b2,求a,c的值.

查看答案和解析>>

同步練習(xí)冊答案