如圖,已知圓G:數(shù)學(xué)公式,定點(diǎn)數(shù)學(xué)公式,M為圓上一動(dòng)點(diǎn),P點(diǎn)在TM上,N點(diǎn)在GM上,且滿(mǎn)足數(shù)學(xué)公式,點(diǎn)N的軌跡為曲線(xiàn)E.
(Ⅰ)求曲線(xiàn) E的方程;
(Ⅱ)設(shè)曲線(xiàn)E交直線(xiàn)l:y=k(x+1)于A、B兩點(diǎn),與x軸交于點(diǎn)C,若數(shù)學(xué)公式,若△ABO的面積是數(shù)學(xué)公式,求a值.

解:(Ⅰ)∵=0,
∴|NM|=|NT|,
∴|NG|+|NT|=|NG|+|NM|=|GM|=2a>|GT|=2a …2分
∴N 的軌跡是以G(-a,0)為焦點(diǎn)的橢圓,且長(zhǎng)軸長(zhǎng)為2a,
∴短軸長(zhǎng)為,
所以E的方程為:x2+3y2=a2.…4分
(Ⅱ)由=0,
設(shè)A(x1,y1),B(x2,y2),
所以由根與系數(shù)的關(guān)系可得:y1+y2= …①,y1y2= …②…6分

∴y1=-2y2 …③
由①③解得:y2=- …④…8分
所以S= …11分
將k=± 代入②③④解得:a=±
滿(mǎn)足△>0 …12分
分析:(Ⅰ)由=0可得|NM|=|NT|,∴|NG|+|NT|=|NG|+|NM|=|GM|=2a>|GT|=2a,再根據(jù)橢圓的定義可得曲線(xiàn)E的方程.
(Ⅱ)聯(lián)立直線(xiàn)與橢圓的方程再結(jié)合根與系數(shù)的關(guān)系可得:y1+y2=,y1y2=,再結(jié)合可得y1=-2y2,即可求出y2,再利用其表示出三角形的面積,進(jìn)而求出k的取值,即可得到a的取值.
點(diǎn)評(píng):本題考查直線(xiàn)與圓錐曲線(xiàn)的綜合題,解題的關(guān)鍵是掌握?qǐng)A錐曲線(xiàn)的定義,由題設(shè)條件判斷出所求的軌跡是橢圓,以及能將向量的數(shù)量積轉(zhuǎn)化為兩個(gè)點(diǎn)的坐標(biāo)關(guān)系,以利于用直線(xiàn)與圓錐曲線(xiàn)的方程研究參數(shù)的取值,本題綜合性強(qiáng)運(yùn)算較繁雜,做題時(shí)要嚴(yán)謹(jǐn)認(rèn)真.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知拋物線(xiàn)G的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸正半軸上,點(diǎn)P(m,4)到其準(zhǔn)線(xiàn)的距離等于5.
(I)求拋物線(xiàn)G的方程;
(II)如圖,過(guò)拋物線(xiàn)G的焦點(diǎn)的直線(xiàn)依次與拋物線(xiàn)G及圓x2+(y-1)2=1交于A、C、D、B四點(diǎn),試證明|AC|•|BD|為定值;
(III)過(guò)A、B分別作拋物G的切線(xiàn)l1,l2且l1,l2交于點(diǎn)M,試求△ACM與△BDM面積之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)F(0,1),直線(xiàn)L:y=-2,及圓C:x2+(y-3)2=1.
(1)若動(dòng)點(diǎn)M到點(diǎn)F的距離比它到直線(xiàn)L的距離小1,求動(dòng)點(diǎn)M的軌跡E的方程;
(2)過(guò)點(diǎn)F的直線(xiàn)g交軌跡E于G(x1,y1)、H(x2,y2)兩點(diǎn),求證:x1x2 為定值;
(3)過(guò)軌跡E上一點(diǎn)P作圓C的切線(xiàn),切點(diǎn)為A、B,要使四邊形PACB的面積S最小,求點(diǎn)P的坐標(biāo)及S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分15分)

        已知拋物線(xiàn)G的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸正半軸上,點(diǎn)P(m,4)到其準(zhǔn)線(xiàn)的距離等于5。

   (I)求拋物線(xiàn)G的方程;

   (II)如圖,過(guò)拋物線(xiàn)G的焦點(diǎn)的直線(xiàn)依次與拋物線(xiàn)G及圓交于A、C、D、B四點(diǎn),試證明為定值;

 
   (III)過(guò)A、B分別作拋物G的切線(xiàn)交于點(diǎn)M,試求面積之和的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2004年廣東省深圳市松崗中學(xué)高考數(shù)學(xué)模擬試卷(1)(解析版) 題型:解答題

如圖,已知點(diǎn)F(0,1),直線(xiàn)L:y=-2,及圓C:x2+(y-3)2=1.
(1)若動(dòng)點(diǎn)M到點(diǎn)F的距離比它到直線(xiàn)L的距離小1,求動(dòng)點(diǎn)M的軌跡E的方程;
(2)過(guò)點(diǎn)F的直線(xiàn)g交軌跡E于G(x1,y1)、H(x2,y2)兩點(diǎn),求證:x1x2 為定值;
(3)過(guò)軌跡E上一點(diǎn)P作圓C的切線(xiàn),切點(diǎn)為A、B,要使四邊形PACB的面積S最小,求點(diǎn)P的坐標(biāo)及S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考數(shù)學(xué)猜題精粹(文科)(解析版) 題型:解答題

已知拋物線(xiàn)G的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸正半軸上,點(diǎn)P(m,4)到其準(zhǔn)線(xiàn)的距離等于5.
(I)求拋物線(xiàn)G的方程;
(II)如圖,過(guò)拋物線(xiàn)G的焦點(diǎn)的直線(xiàn)依次與拋物線(xiàn)G及圓x2+(y-1)2=1交于A、C、D、B四點(diǎn),試證明|AC|•|BD|為定值;
(III)過(guò)A、B分別作拋物G的切線(xiàn)l1,l2且l1,l2交于點(diǎn)M,試求△ACM與△BDM面積之和的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案