已知函數(shù)f(x)=-x3+3x2+9x-2
(Ⅰ)求f(x)的單調(diào)減區(qū)間;
(Ⅱ)求f(x)在區(qū)間[-2,2]上的最值.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:(Ⅰ)由函數(shù)f(x)=-x3+3x2+9x-2,通過求導(dǎo)得出f′(x)<0,解出即可;
(Ⅱ)f(x)在[-1,2]上單調(diào)遞增,在[-2,-1]上單調(diào)遞減,因此f(2)和f(-1)分別是f(x)在區(qū)間[-2,2]上的最大值和最小值,求出即可.
解答: 解:(Ⅰ)∵函數(shù)f(x)=-x3+3x2+9x-2
∴f′(x)=-3x2+6x+9.
令f′(x)<0,解得x<-1或x>3,
∴函數(shù)f(x)的單調(diào)遞減區(qū)間為(-∞,-1),(3,+∞).
(Ⅱ)∵f(-2)=8+12-18-2=0,f(2)=-8+12+18-2=20,
∴f(2)>f(-2).
∵x∈(-1,3)時(shí),f′(x)>0,
∴f(x)在[-1,2]上單調(diào)遞增,
又由于f(x)在[-2,-1]上單調(diào)遞減,
因此f(2)和f(-1)分別是f(x)在區(qū)間[-2,2]上的最大值和最小值.
于是有f(x)max=20,f(x)min=-7.
點(diǎn)評(píng):本題考察了利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,求函數(shù)的最值問題,本題是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lgkx,g(x)=lg(x+1).
(Ⅰ)當(dāng)k=1時(shí),求函數(shù)y=f(x)+g(x)的單調(diào)區(qū)間;
(Ⅱ)若方程f(x)=2g(x)僅有一個(gè)實(shí)根,求實(shí)數(shù)k的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為實(shí)數(shù),f(x)=(x2-4)(x-a).
(1)若f′(-1)=0,求f(x)的單調(diào)增區(qū)間
(2)若函數(shù)f(x)在[
4
3
,+∞)
上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(α+
π
3
)+sinα=-
4
3
5
,-
π
2
<α<0,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax-1,
(1)若函數(shù)f(x)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.
(2)若函數(shù)f(x)在區(qū)間(-1,1)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位建造一間背面靠墻的小房,地面面積為12m2,房屋正面每平方米的造價(jià)為1200元,房屋側(cè)面每平方米的造價(jià)為800元,屋頂?shù)脑靸r(jià)為5800元,如果墻高為3m,且不計(jì)房屋背面和地面的費(fèi)用,問怎樣設(shè)計(jì)房屋能使總造價(jià)最低?最低總造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(x-
π
6
)sin(x+
π
3
),
π
6
≤x≤
12

(1)求函數(shù)f(x)的值域;
(2)若f(x)=
2
2
3
,求f(
x
2
+
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求拋物線f(x)=1+x2與直線x=0,x=1,y=0所圍成的平面圖形的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E,F(xiàn),G,分別是線段PC,PD,DA的中點(diǎn),現(xiàn)將△PDC折起,使平面PDC⊥平面ABCD
(1)求證:平面PAB∥平面EFG.
(2)求證:AD⊥PC.
(3)求二面角G-EF-D的平面角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案