分析 f(x)=ax2+x+$\frac{2}{x}$為奇函數(shù),可得f(x)+f(-x)=0,解得a=0.可得f(x)=x+$\frac{2}{x}$,再利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值即可得出.
解答 解:∵f(x)=ax2+x+$\frac{2}{x}$為奇函數(shù),∴f(x)+f(-x)=0,
∴2ax2=0,x≠0,解得a=0.
∴f(x)=x+$\frac{2}{x}$,
∵f′(x)=1-$\frac{2}{{x}^{2}}$=$\frac{(x+\sqrt{2})(x-\sqrt{2})}{{x}^{2}}$,x∈(0,+∞),${f}^{′}(\sqrt{2})$=0.
∴x>$\sqrt{2}$時,f′(x)>0,函數(shù)f(x)單調(diào)遞增;$\sqrt{2}>$x>0時,f′(x)<0,函數(shù)f(x)單調(diào)遞減.
∴x=$\sqrt{2}$時,函數(shù)f(x)取得極小值即最小值,f($\sqrt{2}$)=2$\sqrt{2}$.
故答案為:2$\sqrt{2}$.
點評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、函數(shù)的奇偶性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 4 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{2}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com