已知橢圓(a>b>0),點在橢圓上。
(I)求橢圓的離心率。
(II)設(shè)A為橢圓的右頂點,O為坐標原點,若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。
【考點定位】本小題主要考查橢圓的標準方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點間距離公式等基礎(chǔ)知識. 考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學思想方法.考查運算求解能力、綜合分析和解決問題的能力.
(1)   (2)

(I)    解:因為點在橢圓上,故.可得
于是,所以橢圓的離心率
(II)解:設(shè)直線OQ的斜率為k,則其方程為.設(shè)點Q的坐標為
由條件得消去并整理得  ①
,,
.
整理得.而,于是,代入①,
整理得
由(I)知,,即,可得.
所以直線OQ的斜率為
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分l2分)已知橢圓的的右頂點為A,離心率,過左焦點作直線與橢圓交于點P,Q,直線AP,AQ分別與直線交于點
(Ⅰ)求橢圓的方程;
(Ⅱ)證明以線段為直徑的圓經(jīng)過焦點

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)已知兩點,曲線上的動點滿足,直線與曲線交于另一點
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知方向向量為的直線l過橢圓的焦點以及點(0,),直線l與橢圓C交于 A 、B 兩點,且A、B兩點與另一焦點圍成的三角形周長為。
(1)求橢圓C的方程
(2)過左焦點且不與x軸垂直的直線m交橢圓于M、N兩點,
(O坐標原點),求直線m的方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C的離心率為,且過點Q(1,).
(1) 求橢圓C的方程;
(2) 若過點M(2,0)的直線與橢圓C相交于A,B兩點,設(shè)P點在直線
上,且滿足 (O為坐標原點),求實數(shù)t的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C: 的一個頂點為A(2,0),離心率為,直線與橢圓C交于不同的兩點M,N。
(1)  求橢圓C的方程
(2)  當的面積為時,求k的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)橢圓,直線過橢圓左焦點且不與軸重合, 與橢圓交于,兩點,當軸垂直時,,若點
(1)求橢圓的方程;
(2)直線繞著旋轉(zhuǎn),與圓交于兩點,若,求的面積 的取值范圍(為橢圓的右焦點)。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點是橢圓上的動點,為橢圓的兩個焦點,是坐標原點,若的角平分線上一點,且,則的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知P為橢圓上一點,F1、F2是橢圓的兩個焦點,,則△F1PF2的面積是          .

查看答案和解析>>

同步練習冊答案