下列說法一定正確的是(  )
A、若ab>ac,則b>c
B、若a>b,c>d,則ac>bd
C、若a>b,則
1
a
1
b
D、若a>b,則a+c>b+c
考點(diǎn):不等式的基本性質(zhì)
專題:不等式的解法及應(yīng)用
分析:A.取a=-3,b=1,c=2,即可判斷出;
B.取a=2,b=1,c=-2,d=-3,即可判斷出;
C.取a=2,b=-1,即可判斷出;
D.利用不等式的基本性質(zhì)即可判斷出.
解答: 解:A.取a=-3,b=1,c=2,可知不成立;
B.取a=2,b=1,c=-2,d=-3,可知不成立;
C.取a=2,b=-1,可知不成立;
D.∵a>b,∴a+c>b+c,正確.
綜上可得:只有D正確.
故選:D.
點(diǎn)評(píng):本題考查了不等式的基本性質(zhì)、舉反例否定一個(gè)命題的方法,考查了推理能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x+1,若存在實(shí)數(shù)t,使得不等式f(x+t)≤x對(duì)任意的x∈[1,m](m>1)恒成立,則實(shí)數(shù)m的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x+
1
x
)=x2+
1
x2
-4,則函數(shù)f(x)的表達(dá)式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l與圓C:x2+y2+2x-4y+a=0相交于A,B兩點(diǎn),弦AB的中點(diǎn)為M(0,1),
(1)求實(shí)數(shù)a的取值范圍以及直線l的方程;
(2)若圓C上存在四個(gè)點(diǎn)到直線l的距離為
2
,求實(shí)數(shù)a的取值范圍;
(3)已知N(0,-3),若圓C上存在兩個(gè)不同的點(diǎn)P,使PM=
3
PN,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lnx關(guān)于x軸對(duì)稱的函數(shù)為( 。
A、g(x)=ln(-x)
B、g(x)=-ln(-x)
C、g(x)=ln(
1
x
D、g(x)=-ln(
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合{3,|x|,x}={-2,2,y},則(
1
2
)x+2y
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=logax(a>0,a≠1)在[
1
2
,4]上的最大值是M,最小值是m,且M-m=3,則實(shí)數(shù)a=( 。
A、
1
2
B、2
C、
1
3
且2
D、
1
2
或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(2-a)x在定義域內(nèi)是減函數(shù),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a2=1,a4=5,則a3=(  )
A、5B、4C、3D、2

查看答案和解析>>

同步練習(xí)冊(cè)答案