2.在等差數(shù)列中,a9=3,則此數(shù)列前17項和等于( 。
A.51B.34C.102D.不能確定

分析 由等差數(shù)列{an}的性質(zhì)可得:a1+a17=2a9=6,再利用前n項和公式即可得出.

解答 解:由等差數(shù)列{an},a9=3,
∴a1+a17=2a9=6,
∴此數(shù)列前17項的和S17=$\frac{17({a}_{1}+{a}_{17})}{2}$=17×3=51.
故選:A.

點評 本題考查了等差數(shù)列的性質(zhì)及其前n項和公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.($\frac{64}{27}$)${\;}^{\frac{1}{2}}$+log3$\frac{10}{9}$+log3$\frac{9}{10}$=$\frac{8\sqrt{3}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}滿足:對任意的n∈N*均有an+1=kan+2k-2,其中k為不等于0與1的常數(shù),若ai∈{-272,-32,-2,8,88,888},i=2、3、4、5,則滿足條件的a1所有可能值的和為$\frac{2402}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=ln(ex+e-x)+x2,則使得f(x)>f(2x-1)成立的x的取值范圍是($\frac{1}{3}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,AB=3,BC=4,D是BC的中點,且$∠B=\frac{π}{3}$,則sin∠ADC=( 。
A.$\frac{{\sqrt{7}}}{4}$B.$\frac{{3\sqrt{21}}}{14}$C.$\frac{{\sqrt{39}}}{26}$D.$\frac{{\sqrt{7}}}{28}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.?dāng)?shù)列{an}的前n項和為Sn,a1=1,Sn=$\frac{{{a_{n+1}}-1}}{2}({n∈{N^*}})$,
(1)求{an}的通項公式;
(2)等差數(shù)列{bn}的各項均為正數(shù),其前n項和為Tn,且T3=15,又a1+b1,a2+b2,a3+b3成等比數(shù)列,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,四棱錐P-ABCD的底面是矩形,PA⊥底面ABCD,PA=AD=2AB=2,E、F分別為BC與PD的中點.
(1)求證:PE⊥DE;
(2)求直線CF與平面PAC的夾角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)為定義域為R的奇函數(shù),且f(x)=f(2-x),當(dāng)x∈[0,1]時,f(x)=sinx,則函數(shù)g(x)=|cos(πx)|-f(x)在區(qū)間$[-\frac{5}{2},\frac{9}{2}]$上的所有零點的和為( 。
A.6B.7C.13D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列命題中錯誤的是( 。
A.如果平面α外的直線a不平行于平面α,平面α內(nèi)不存在與a平行的直線
B.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么直線l⊥平面γ
C.如果平面α⊥平面β,那么平面α內(nèi)所有直線都垂直于平面β
D.一條直線與兩個平行平面中的一個平面相交,則必與另一個平面相交

查看答案和解析>>

同步練習(xí)冊答案