方程組
x+1=1
x2-y2=9
的解集是
 
.(用列舉法表示)
考點:集合的表示法
專題:集合
分析:先解方程組,再用列舉法表示.
解答: 解:
x=0
y∈∅

故答案為:∅.
點評:本題主要考查集合的表示方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(1+cosα,sinα),參數(shù)α∈[0,π],點Q在曲線C:ρ=
10
2
sin(θ-
π
4
)
上.
(1)求點P的軌跡方程和曲線的直角坐標(biāo)方程:
(2)求|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|2x+1≤1},B={x|log 
1
2
x≥1},求A∩∁RB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:cos36°cos96°+sin36°sin84°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一組隨機量xi,xi∈(0,100],i=1,2,…,n,現(xiàn)有兩位同學(xué)繪制頻率分布直方圖,一人分成10組作圖,另一人分成20組作圖,各組頻率分別記為a1,a2,…,a10;b1,b2,…,b20,則下列說法正確的是
 
.(填入所有你認(rèn)為正確說法的序號)
①它們的頻率和相同;
②ai=b2i-1+b2i
③頻率分布直方圖的面積相等;
④ai>bi,i=1,2,…,10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定圓C:(x-1)2+y2=1,若動圓P與定圓C外切,并且與y軸相切,那么動圓圓心P的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x<
5
4
,則函數(shù)y=4x-1+
1
4x-5
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列敘述:
①一個簡諧運動的函數(shù)解析式為f(x)=sin(2x+
4
),則這個簡諧運動的函數(shù)的周期為π;
②已知向量
a
=
e1
+2
e2
b
=3
e1
-2
e2
(其中
e1
,
e2
為不共線的單位向量),則
a
+
b
與-
1
2
a
+
1
2
b
為共線向量;
③定義:若任意x∈R,總有a-x∈A(A≠∅),就稱集合A為a的“閉集”.已知集合A⊆{1,2,3,4,5,6},且A為6的“閉集”,則這樣的集合A共有7個;
④已知函數(shù)h(x)=sinx,g(x)=x2-π|x|,設(shè)函數(shù)f(x)=
g(x),h(x)≥g(x)
h(x),h(x)<g(x)
,則關(guān)于x的方程f(x)-k=0(k∈[-
π2
4
,0])在[-16,16]上至少有兩個解,至多有13個解.
其中所有正確敘述的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(-2,0)、B(2,0),動點P滿足∠APB=2θ(θ∈(0,
π
2
)).給出以下命題:
①當(dāng)θ=
π
4
時,動點P的軌跡方程為x2+y2=4,y≠0;
②若θ(θ≠
π
4
)為定值,則點P的軌跡是以Q(0,
2
tan2θ
)為圓心、QA為半徑的一段圓。
③若|PA|•|PB|(cos2θ-
1
2
)=2,則動點P的軌跡方程為x2+y2=8;
④若動點P恰在橢圓
x2
b2+4
+
y2
b2
=1(b>0)上,則△PAB的面積為b2tanθ.
其中,正確說法的序號為
 

查看答案和解析>>

同步練習(xí)冊答案