17.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,1)、B(1,1),P是動(dòng)點(diǎn),且直線AP與B 的斜率之積等于-$\frac{1}{3}$.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)直線AP與BP分別與直線x=3相交于點(diǎn)M、N,試問:是否存在點(diǎn)P使得△PAB 與△PMN的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

分析 (1)由題意設(shè)出P的坐標(biāo),列出等式,用P的坐標(biāo)表示等式即可得到結(jié)果,注意范圍.(2)求出設(shè)出直線AP,BP方程,求出與x=3的交點(diǎn)坐標(biāo),由題意列方程即可.

解答 解:(1)設(shè)點(diǎn)P的坐標(biāo)(x,y),由題意得$\frac{y-1}{x+1}•\frac{y-1}{x-1}=-\frac{1}{3}$,
化簡得 x2+3(y-1)2=1(x≠±1).
故動(dòng)P的軌跡方程為x2+3(y-1)2=1(x≠±1).
(2)若存在點(diǎn)P使得△PAB與△PMN的面積相等,設(shè)P的坐標(biāo)為(x0,y0),x0∈[-1,1]
則$\frac{1}{2}|PA|•|PB|sin∠APB=\frac{1}{2}|PM|•|PN|sin∠MPN$.
因?yàn)閟in∠APB=sin∠MPN,
所以  $\frac{|PA|}{|PM|}=\frac{|PN|}{|PB|}$,
所以$\frac{|{x}_{0}+1|}{|3-{x}_{0}|}=\frac{|3-{x}_{0}|}{|{x}_{0}-1|}$,
即 $(3-{x}_{0)^{2}}=|{{x}_{0}}^{2}-1|$,
解得${x}_{0}=\frac{5}{3}$∉[-1,1],
故不存在點(diǎn)P(x0,y0)使△PAB與△PMN的面積相等.

點(diǎn)評 本題考查圓錐曲線的綜合問題.第二問由等量關(guān)系得到點(diǎn)P的坐標(biāo)得等式是解題關(guān)鍵.利用幾何性質(zhì)轉(zhuǎn)化可以減少運(yùn)算量.本題難度一般.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)$f(x)=\frac{1}{{\sqrt{x-2}}}-\sqrt{x-5}$,則函數(shù)的定義域?yàn)閇5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$y=sin({-2x+\frac{π}{6}}),x∈R$
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的最大值及其對應(yīng)的x的值;
(3)寫出函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=asinx+bcosx(a>0),且當(dāng)f($\frac{π}{4}$)=$\sqrt{2}$時(shí)f(x)的最大值為$\sqrt{10}$.
(1)求a,b的值.
(2)若f(x)=1且x≠kπ,(k∈Z)求sin2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知A=$\{x|y=\sqrt{x}+1\}$,B=$\{y|y=\sqrt{x}-1\}$,則A∩B=( 。
A.(-∞,0)B.[0,+∞)C.[1,+∞)D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若α是第四象限角,且$cosα=\frac{3}{5}$,則$cos(\frac{π}{2}-α)$等于(  )
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)m=0.30.2,n=log0.23,p=sin1+cos1,則m,n,p的從大到小關(guān)系為p>m>n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知圓(x+1)2+y2=9與直線y=tx+3交于A,B兩點(diǎn),點(diǎn)P(a,b)在直線y=2x上,且PA=PB,則a的取值范圍為(-1,0)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\sqrt{2}$sin$\frac{x}{2}$cos$\frac{x}{2}$-$\sqrt{2}$sin2$\frac{x}{2}$.
(1)求f(x)的最小正周期;
(2)設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且c=$\sqrt{3}$,f(C)=0,若向量$\overrightarrow{m}$=(1,sinA)與向量$\overrightarrow{n}$=($\sqrt{2}$,sinB)共線,求a,b.

查看答案和解析>>

同步練習(xí)冊答案