據市場分析,廣饒縣馳中集團某蔬菜加工點,當月產量在10噸至25噸時,月生產總成本(萬元)可以看成月產量(噸)的二次函數.當月產量為10噸時,月總成本為20萬元;當月產量為15噸時,月總成本最低為17.5萬元.
(1)寫出月總成本(萬元)關于月產量(噸)的函數關系;
(2)已知該產品銷售價為每噸1.6萬元,那么月產量為多少時,可獲最大利潤;
(3)當月產量為多少噸時, 每噸平均成本最低,最低成本是多少萬元?
(1)( ),(2)月產量為23噸時,可獲最大利潤12.9萬元.(3)月產量為20噸時,每噸平均成本最低,最低成本為1萬元.
解析試題分析:(1)由待定系數法設出將x=10,y=20代入可得.(2)利潤=收入-成本,設利潤為可得化為二次函數求最值即可.(3)平均成本=可化為利用基本不等式求最小值.
試題解析:解:(1) () 2分
將x=10,y=20代入上式得,20=25a+17.5,解得 3分
( ) 4分
(2)設利潤為則 6分
因為,所以月產量為23噸時,可獲最大利潤12.9萬元8分
(3) 10分
當且僅當,即時上式“=”成立. 11分
故當月產量為20噸時,每噸平均成本最低,最低成本為1萬元. 12分
考點:本題主要考查二次函數,基本不等式的應用.
科目:高中數學 來源: 題型:解答題
為了凈化空氣,某科研單位根據實驗得出,在一定范圍內,每噴灑1個單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間(單位:天)變化的函數關系式近似為若多次噴灑,則某一時刻空氣中的凈化劑濃度為每次投放的凈化劑在相應時刻所釋放的濃度之和.由實驗知,當空氣中凈化劑的濃度不低于4(毫克/立方米)時,它才能起到凈化空氣的作用.
(1)若一次噴灑4個單位的凈化劑,則凈化時間可達幾天?
(2)若第一次噴灑2個單位的凈化劑,6天后再噴灑a()個單位的藥劑,要使接下來的4天中能夠持續(xù)有效凈化,試求的最小值(精確到0.1,參考數據:取1.4).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
定義在[﹣1,1]上的奇函數f(x)滿足f(1)=2,且當a,b∈[﹣1,1],a+b≠0時,有.
(1)試問函數f(x)的圖象上是否存在兩個不同的點A,B,使直線AB恰好與y軸垂直,若存在,求出A,B兩點的坐標;若不存在,請說明理由并加以證明.
(2)若對所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
為了保護環(huán)境,某工廠在國家的號召下,把廢棄物回收轉化為某種產品,經測算,處理成本(萬元)與處理量(噸)之間的函數關系可近似的表示為:
,且每處理一噸廢棄物可得價值為萬元的某種產品,同時獲得國家補貼萬元.
(1)當時,判斷該項舉措能否獲利?如果能獲利,求出最大利潤;
如果不能獲利,請求出國家最少補貼多少萬元,該工廠才不會虧損?
(2)當處理量為多少噸時,每噸的平均處理成本最少?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數對任意的恒有成立.
(1)當b=0時,記若在)上為增函數,求c的取值范圍;
(2)證明:當時,成立;
(3)若對滿足條件的任意實數b,c,不等式恒成立,求M的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設在海拔xm處的大氣壓強是yPa,y與x之間的函數關系為y=cekx,其中c、k為常量.已知某天的海平面的大氣壓為1.01×105Pa,1000m高空的大氣壓為0.90×105Pa,求600m高空的大氣壓強.(保留3位有效數字)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)對任意實數x均有f(x)=kf(x+2),其中常數k為負數,且f (x)在區(qū)間[0,2]上有表達式f(x)=x(x-2).
(1)求f(-1),f(2.5)的值;
(2)寫出f(x)在[-3,3]上的表達式,并討論函數f(x)在[-3,3]上的單調性;
(3)求出f(x)在[-3,3]上的最小值與最大值,并求出相應的自變量的取值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com