分析 (1)以圓心O為原點(diǎn),以水平方向?yàn)閤軸方向,以豎直方向?yàn)閅軸方向建立平面直角坐標(biāo)系,則根據(jù)纜車半徑為4.8m,圓上最低點(diǎn)與地面距離為0.8m,60秒轉(zhuǎn)動(dòng)一圈,即可得到h與θ間的函數(shù)關(guān)系式;
(2)由60秒轉(zhuǎn)動(dòng)一圈,我們易得點(diǎn)A在圓上轉(zhuǎn)動(dòng)的角速度是$\frac{π}{30}$,故t秒轉(zhuǎn)過的弧度數(shù)為$\frac{π}{30}$t,根據(jù)(1)的結(jié)論,我們將$\frac{π}{30}$t代入解析式,即可得到滿足條件的t值.
解答 解:(1)以圓心O為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,
則以O(shè)x為始邊,OB為終邊的角為θ-$\frac{π}{2}$,
故點(diǎn)B的坐標(biāo)為(4.8cos(θ-$\frac{π}{2}$),4.8sin(θ-$\frac{π}{2}$)),∴h=5.6+4.8sin(θ-$\frac{π}{2}$).
(2)點(diǎn)A在圓上轉(zhuǎn)動(dòng)的角速度是$\frac{π}{30}$,故t秒轉(zhuǎn)過的弧度數(shù)為$\frac{π}{30}$t,
∴h=5.6+4.8sin$(\frac{π}{30}t-\frac{π}{2})$,t∈[0,+∞).
當(dāng)h=8m.
由h=5.6+4.8sin$(\frac{π}{30}t-\frac{π}{2})$=8,
得4.8sin$(\frac{π}{30}t-\frac{π}{2})$=2.4
sin$(\frac{π}{30}t-\frac{π}{2})$=$\frac{1}{2}$
得$\frac{π}{30}$t-$\frac{π}{2}$=$\frac{π}{6}$,
即$\frac{π}{30}$t=$\frac{π}{2}$+$\frac{π}{6}$=$\frac{2π}{3}$,
∴t=20
∴纜車離地面8米時(shí)用的最少時(shí)間是20秒.
點(diǎn)評 本題考查的知識(shí)點(diǎn)是在實(shí)際問題中建立三角函數(shù)模型,在建立函數(shù)模型的過程中,以圓心O為原點(diǎn),以水平方向?yàn)閤軸方向,以豎直方向?yàn)閅軸方向建立平面直角坐標(biāo)系,是解決本題的關(guān)鍵.綜合性較強(qiáng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
ξ | 0 | 1 | 2 |
P | $\frac{1}{2}$-p | p | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{15}$ | B. | $\frac{2}{15}$ | C. | $-\frac{2}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com