(08年廣東佛山質(zhì)檢文)如圖組合體中,三棱柱的側(cè)面是圓柱的軸截面,是圓柱底面圓周上不與、重合一個點(diǎn).
(Ⅰ)求證:無論點(diǎn)如何運(yùn)動,平面平面;
(Ⅱ)當(dāng)點(diǎn)是弧的中點(diǎn)時,求四棱錐與圓柱的體積比.
解析:(I)因?yàn)閭?cè)面是圓柱的的軸截面,是圓柱底面圓周上不與、重合一個點(diǎn),所以 …………………2分
又圓柱母線^平面, Ì平面,所以^,
又,所以^平面,
因?yàn)?IMG height=19 src='http://thumb.zyjl.cn/pic1/img/20090318/20090318152110008.gif' width=27>Ì平面,所以平面平面;…………………………………6分
(II)設(shè)圓柱的底面半徑為,母線長度為,
當(dāng)點(diǎn)是弧的中點(diǎn)時,三角形的面積為,
三棱柱的體積為,三棱錐的體積為,
四棱錐的體積為,…………………………………………10分
圓柱的體積為, ………………………………………………12分
四棱錐與圓柱的體積比為.………………………………………………14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年廣東佛山質(zhì)檢理)已知拋物線及點(diǎn),直線斜率為且不過點(diǎn),與拋物線交于點(diǎn)、兩點(diǎn).
(Ⅰ)求直線在軸上截距的取值范圍;
(Ⅱ)若、分別與拋物線交于另一點(diǎn)、,證明:、交于定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年廣東佛山質(zhì)檢文)某物流公司購買了一塊長米,寬米的矩形地塊,規(guī)劃建設(shè)占地如圖中矩形的倉庫,其余地方為道路和停車場,要求頂點(diǎn)在地塊對角線上,、分別在邊、上,假設(shè)長度為米.
(1)要使倉庫占地的面積不少于144平方米,長度應(yīng)在什么范圍內(nèi)?
(2)若規(guī)劃建設(shè)的倉庫是高度與長度相同的長方體形建筑,問長度為多少時倉庫的庫容最大?(墻體及樓板所占空間忽略不計)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年廣東佛山質(zhì)檢理)如圖,在組合體中,是一個長方體,是一個四棱錐.,,點(diǎn)且.
(Ⅰ)證明:;
(Ⅱ)求與平面所成的角的正切值;
(Ⅲ)若,當(dāng)為何值時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年廣東佛山質(zhì)檢理)拋物線的準(zhǔn)線的方程為,該拋物線上的每個點(diǎn)到準(zhǔn)線的距離都與到定點(diǎn)N的距離相等,圓N是以N為圓心,同時與直線 相切的圓,
(Ⅰ)求定點(diǎn)N的坐標(biāo);
(Ⅱ)是否存在一條直線同時滿足下列條件:
① 分別與直線交于A、B兩點(diǎn),且AB中點(diǎn)為;
② 被圓N截得的弦長為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年廣東佛山質(zhì)檢理)數(shù)列滿足 .
(Ⅰ)求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{}的前項(xiàng)和為,證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com