若關(guān)于x的方程ax2+2x+1=0至少有一個負根,則(  )
A、a≤1
B、0<a<1
C、a<1
D、0<a≤1或a<0
考點:函數(shù)的零點與方程根的關(guān)系
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:先對二次項系數(shù)分為0和不為0兩種情況討論,在二次項系數(shù)不為0時又分兩根一正一負和兩根均為負值兩種情況,綜合在一起找到a所滿足的條件a≤1,再利用上述過程可逆,就可以下結(jié)論充要條件是a≤1.
解答: 解:①a≠0時,顯然方程沒有等于零的根.
若方程有兩異號實根,則a<0;
若方程有兩個負的實根,
則必有
1
a
>0
-
2
a
<0
△=4-4a≥0
⇒0<a≤1.
②若a=0時,可得x=-
1
2
也適合題意.
綜上知,若方程至少有一個負實根,則a≤1.
反之,若a≤1,則方程至少有一個負的實根,
因此,關(guān)于x的方程ax2+2x+1=0至少有一負的實根的充要條件是a≤1.
故選:A.
點評:本題主要考查一個一元二次根的分布問題,屬于中檔題.在二次項系數(shù)不確定的情況下,注意一定要分二次項系數(shù)分為0和不為0兩種情況討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=2sin(
5
8
πx)-log2x的零點個數(shù),并畫出圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位用分期付款方式為職工購買40套住房,共需1150萬元,購買當(dāng)天先付150萬元,以后每月這一天都交付50萬元,并加付欠款利息,月利率為1%.若交付150萬元后的第一個月算分期付款的第一個月,求分期付款的第10個月應(yīng)付多少錢?最后一次應(yīng)付多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin2x+2cos2x.
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間.
(Ⅱ)將f(x)的圖象向右平移
π
12
個單位長度,得到函數(shù)g(x)的圖象;再將得到函數(shù)g(x)的圖象向下平移1個單位,同時將周期擴大1倍,得到函數(shù)h(x)的圖象,分別寫出函數(shù)g(x)與h(x)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a1+a2+a3+…+a101=0,則a1+a101與0的大小關(guān)系為( 。
A、a1+a101>0
B、a1+a101<0
C、a1+a101=0
D、以上皆有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=-
1
3
x3+
1
2
x2+2ax.
(1)若f(x)在(
2
3
,+∞)上是單調(diào)減函數(shù),求實數(shù)a的取值范圍.
(2)當(dāng)0<a<2時,f(x)在[1,4]上的最小值為-
16
3
,求f(x)在該區(qū)間的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2+bx+2,x≤0
|2-x|,x>0
若f(-4)=f(0),則函數(shù)y=f(x)-ln(x+2)的零點個數(shù)有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+ax+1,若f(|x|)有4個單調(diào)區(qū)間,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知“命題p:x≤m”是“命題q:x2+3x-4<0”成立的必要不充分條件,則實數(shù)m的取值范圍為
 
(用區(qū)間表示)

查看答案和解析>>

同步練習(xí)冊答案