A. | $({0,\frac{1}{2}})$ | B. | $({\frac{1}{2},1})$ | C. | (1,2) | D. | (2,e) |
分析 f(x)=xlnx-ax2(x>0),f′(x)=lnx+1-2ax.令g(x)=lnx+1-2ax,由于函數(shù)f(x)=x(lnx-ax)有兩個極值點?g(x)=0在區(qū)間(0,+∞)上有兩個實數(shù)根.求出g(x)的導數(shù),當a≤0時,直接驗證;當a>0時,利用導數(shù)研究函數(shù)g(x)的單調(diào)性可得,要使g(x)有兩個不同解,只需要g($\frac{1}{2a}$)=ln$\frac{1}{2a}$>0,解得即可.
解答 解:f(x)=xlnx-ax2(x>0),f′(x)=lnx+1-2ax.
令g(x)=lnx+1-2ax,
∵函數(shù)f(x)=x(lnx-ax)有兩個極值點,則g(x)=0在區(qū)間(0,+∞)上有兩個實數(shù)根.
g′(x)=$\frac{1}{x}$-2a=$\frac{1-2ax}{x}$,
當a≤0時,g′(x)>0,則函數(shù)g(x)在區(qū)間(0,+∞)單調(diào)遞增,因此g(x)=0在區(qū)間(0,+∞)上不可能有兩個實數(shù)根,應舍去.
當a>0時,令g′(x)=0,解得x=$\frac{1}{2a}$,
令g′(x)>0,解得0<x<$\frac{1}{2a}$,此時函數(shù)g(x)單調(diào)遞增;
令g′(x)<0,解得x>$\frac{1}{2a}$,此時函數(shù)g(x)單調(diào)遞減.
∴當x=$\frac{1}{2a}$時,函數(shù)g(x)取得極大值.
當x趨近于0與x趨近于+∞時,g(x)→-∞,
要使g(x)=0在區(qū)間(0,+∞)上有兩個實數(shù)根,
則g($\frac{1}{2a}$)=ln$\frac{1}{2a}$>0,解得0<a<$\frac{1}{2}$.
∴實數(shù)a的取值范圍是(0,$\frac{1}{2}$).
故選:A.
點評 本題考查了利用導數(shù)研究函數(shù)的單調(diào)性極值,考查了等價轉(zhuǎn)化方法,考查了推理能力和計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 5 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | “am2<bm2”是“a<b”的充分不必要條件 | |
B. | 命題“?x∈R,x2-x-1≤0”的否定是“$?{x_0}∈{R},{x_0}^2-{x_0}-1>0$” | |
C. | 若p,q均為假命題,則p∧q為假命題 | |
D. | 若ζ~B(4,0.25),則Dξ=1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com