5.設集合U={x|x2-3x+2=0,x∈R},則集合U的子集的個數(shù)是4.

分析 解方程求出U的元素,從而求出其子集的個數(shù)即可.

解答 解:U={x|x2-3x+2=0,x∈R}={1,2},
則集合U的子集的個數(shù)是:22=4,
故答案為:4.

點評 本題考查了求集合的子集問題,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知直線l:y=x+m,圓O:x2+y2-4=0,圓C:x2+y2+2ax-2ay+2a2-4a=0(0<a≤4).
(1)若a=3,圓O與圓C交于M,N兩點,試求線段|MN|的長.
(2)直線 l與圓C相切,且直線l在圓C心的下方,當0<a≤4時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知定義在R上的函數(shù)f(x),對任意x∈R,都有f(x+2)=f(x)+f(1)成立,若函數(shù)y=f(x-1)的圖象關于直線x=1對稱,則f(2015)=(  )
A.-2B.0C.2D.2015

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-y+4≥0\\ x+y-2≤0\\ y-2≥0\end{array}$,則2y•($\frac{1}{4}$)x的最小值是( 。
A.1B.2C.8D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列四組函數(shù)中,表示同一個函數(shù)的是( 。
A.f(x)=|x+1|,g(x)=$\left\{\begin{array}{l}{x+1(x≥-1)}\\{-1-x(x<-1)}\end{array}\right.$B.f(x)=$\frac{{x}^{2}-1}{x+1}$,g(x)=x-1
C.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2D.f(x)=x,g(x)=$\sqrt{{x}^{2}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如圖所示,在邊長為1的正方形OABC內(nèi)任取一點P,用A表示事件“點P恰好自由曲線$y=\sqrt{x}$與直線x=1及x軸所圍成的曲邊梯形內(nèi)”,B表示事件“點P恰好取自陰影部分內(nèi)”,則P(B|A)等于( 。
A.$\frac{1}{4}$B.$\frac{1}{5}$C.$\frac{1}{6}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若點(1,-3)在圓(x-2)2+(y+1)2=m的內(nèi)部,則實數(shù)m的取值范圍是(  )
A.0<m<10B.0<m<5C.m>5D.m<5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若函數(shù)f(x)=xlnx-ax2有兩個極值點,則實數(shù)a的取值范圍是(  )
A.$({0,\frac{1}{2}})$B.$({\frac{1}{2},1})$C.(1,2)D.(2,e)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=sin(π-ωx)cosωx+cos2ωx(ω>0)的最小正周期為π.
(1)求ω的值;
(2)將函數(shù)y=f(x)的圖象上各點的橫坐標縮短到原來的$\frac{1}{2}$,縱坐標不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,$\frac{π}{16}$]上的最小值.

查看答案和解析>>

同步練習冊答案