9.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$2\sqrt{2}$D.$2\sqrt{3}$

分析 由三視圖知該幾何體為正四面體,其棱長(zhǎng)為$\sqrt{2}$,代入三角形面積公式求得原幾何體的表面積.

解答 解:由題意知該幾何體為正四面體,其棱長(zhǎng)為$\sqrt{2}$,
故其表面積為$\frac{1}{2}\;•\;\sqrt{2}\;•\;\sqrt{2}\;•\;sin\frac{π}{3}\;•\;4=2\sqrt{3}$,
故選:D.

點(diǎn)評(píng) 本題考查由三視圖求原幾何體的體積,關(guān)鍵是明確圓幾何體的形狀,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在平面直角坐標(biāo)系xOy中,以點(diǎn)(-2,3)為圓心且與直線mx-y-2m-1=0(m∈R)相切的所有圓中,半徑最大的圓的標(biāo)準(zhǔn)方程為(x+2)2+(y-3)2=20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知點(diǎn)A(1,2)、B(3,-4),則線段AB的垂直平分線的方程是( 。
A.3x+y=0B.x-3y=10C.3x+y=5D.x-3y=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$,x∈R)的部分圖象如圖,M是圖象的一個(gè)最低點(diǎn),圖象與x軸的一個(gè)交點(diǎn)坐標(biāo)為($\frac{π}{2}$,0),與y軸的交點(diǎn)坐標(biāo)為(0,-$\sqrt{2}$).
(1)求A,ω,φ的值;
(2)關(guān)于x的方程f(x)-m=0在[0,2π]上有解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知拋物線x2=2py(p>0)的焦點(diǎn)與橢圓4x2+2y2=1的一個(gè)焦點(diǎn)重合,直線l:y=-x+b與此拋物線交于不同的兩點(diǎn)B,C.
(1)求此拋物線的方程;
(2)若|BC|≤4,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知直線的極坐標(biāo)方程為$ρcos(θ+\frac{π}{3})=\frac{{\sqrt{3}}}{2}$,則極點(diǎn)到該直線的距離是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖所示,已知四邊形ABCD,對(duì)角線AC恰好是∠DAB的平分線,$\overrightarrow{DO}=2\overrightarrow{OB}$,∠DOC=2∠ODA,則∠DAB=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.一個(gè)盒子中裝有大小相同的小球n個(gè),在小球上分別標(biāo)有1,2,3,…,n的號(hào)碼,已知從盒子中隨機(jī)地取出3個(gè)球,3個(gè)球的號(hào)碼最大值為n的概率為$\frac{3}{8}$.
(1)求n的值;
(2)現(xiàn)從盒子中隨機(jī)地取出4個(gè)球,記所取4個(gè)球的號(hào)碼中,連續(xù)自然數(shù)的個(gè)數(shù)的最大值為隨機(jī)變量ξ(如取2468時(shí),ξ=1;取1246時(shí),或取1245時(shí),ξ=2;取1235時(shí),ξ=3).
(i)求 P(ξ=3)的值;        
(ii)求隨機(jī)變量ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x,x∈[0,$\frac{π}{2}$]
(1)求函數(shù)f(x)的值域;
(2)求函數(shù)f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案