((本小題滿分15分)
已知圓C過(guò)定點(diǎn)F,且與直線相切,圓心C的軌跡為E,曲線E與直線交于A、B兩點(diǎn)。
(I)求曲線E的方程;
(II)在曲線E上是否存在與的取值無(wú)關(guān)的定點(diǎn)M,使得MA⊥MB?若存在,求出所有符合條件的定點(diǎn)M;若不存在,請(qǐng)說(shuō)明理由。

(1)
(2) 故存在唯一的合乎題意的點(diǎn)M(0,0)

解:(Ⅰ)由題意,點(diǎn)C到定點(diǎn)F(-,0)和直線的距離相等,
所以點(diǎn)C的軌跡方程為                         ………(5分)
(Ⅱ)由方程組消去后,整理得    ……(6分)
設(shè)A(x1,y1),B(),由韋達(dá)定理有 ,-1, ………(8分)
(10分)
(14分)
故存在唯一的合乎題意的點(diǎn)M(0,0).                ………(15分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓C的長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)之比為,焦點(diǎn)坐標(biāo)分別為F1(-2,0),F(xiàn)2(2,0),O是坐標(biāo)原點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知A(-3,0),B(3,0)P是橢圓C上異于A、B的任意一點(diǎn),直線AP、BP分別交于y軸于M、N兩點(diǎn),求的值;
(3)在(2)的條件下,若G(s,o)、H(k,o)且,(s<k),分別以線段OG、OH為邊作兩個(gè)正方形,求這兩上正方形的面積和的最小值,并求出取得最小值時(shí)G、H兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓和雙曲線的公共點(diǎn)為是兩曲線的一個(gè)交點(diǎn), 那么的值是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)設(shè)方程表示曲線C.
(1)m=5時(shí),求曲線C的離心率和準(zhǔn)線方程;
(2)若曲線C表示橢圓,求橢圓焦點(diǎn)在y軸上的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
設(shè)橢圓、拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上至少取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
x
3
—2
4


y

0
—4

-
 
(1)求的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓交于不同兩點(diǎn),請(qǐng)問(wèn)是否存在這樣的
直線過(guò)拋物線的焦點(diǎn)?若存在,求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓和雙曲線的公共點(diǎn)為是兩曲線的一個(gè)交點(diǎn), 那么的值是___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已橢圓與雙曲線有相同的焦點(diǎn),若c是a、m的等比中項(xiàng),n2是2m2與c2的等差中項(xiàng),則橢圓的離心率e =
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

經(jīng)過(guò)一定圓外一定點(diǎn),并且與該圓外切的動(dòng)圓圓心的軌跡是             (     )
A.圓B.橢圓C.直線D.雙曲線的一支

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為     

查看答案和解析>>

同步練習(xí)冊(cè)答案