分析 問題轉(zhuǎn)化為y=f(x)與y=a(x-1)有且只有兩個不同的交點,即可得出結(jié)論.
解答 解:設1<x≤3,則-1<x-2≤1,f(x)=$-\frac{1}{2}(x-2)^{2}+\frac{1}{2}$,同理3<x≤5,f(x)=$-\frac{1}{2}(x-4)^{2}+\frac{1}{2}$+$\frac{1}{2}$,
∵方程f(x)=a|x-1|,(a∈R)有且僅有兩個不相等的實數(shù)解,
∴y=f(x)與y=a(x-1)有且只有兩個不同的交點,
可知a≤0時滿足題意,
a>0時,由$-\frac{1}{2}(x-4)^{2}+\frac{1}{2}$+$\frac{1}{2}$=a(x-1),可得x2+(2a-8)x-2a+14=0,
由△=(2a-8)2-4(-2a+14)=0,可得a=3-$\sqrt{7}$.
(5,$\frac{1}{2}$)代入y=a(x-1),可得a=$\frac{1}{8}$,(7,1)代入y=a(x-1),可得a=$\frac{1}{6}$,故$\frac{1}{8}≤a<\frac{1}{6}$滿足題意,
∴若方程f(x)=a|x-1|,(a∈R)有且僅有兩個不相等的實數(shù)解,則實數(shù)a的取值范圍是a≤0或a=3-$\sqrt{7}$或$\frac{1}{8}≤a<\frac{1}{6}$.
故答案為a≤0或a=3-$\sqrt{7}$或$\frac{1}{8}≤a<\frac{1}{6}$.
點評 本題考查方程根的研究,考查數(shù)形結(jié)合的數(shù)學思想,正確運用函數(shù)的圖象是關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-3,1]∪[3,+∞) | B. | [-3,1]∪[2,+∞) | C. | [-1,1]∪[3,+∞) | D. | (-∞,-3]∪[1,3] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,-$\frac{3}{2}$)∪(-1,1) | C. | (-∞,-$\frac{3}{2}$) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3x<3y | B. | lnx<lny | C. | ($\frac{1}{4}$)x>($\frac{1}{4}$)y | D. | $\frac{1}{x}$<$\frac{1}{y}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com