四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,PB⊥PC,PD⊥CD,且PA=2,點(diǎn)E滿足

(Ⅰ)求證:PA⊥平面ABCD;

(Ⅱ)求二面角E-AE-D的余弦值.

答案:
解析:

  解:(Ⅰ)正方形ABCD中,,

  又,所以

  所以 2分

  又

  

   4分

  又

   5分

  (Ⅱ)方法一:

  在平面PAD中,過E//,交ADF,過FAC的垂線,垂足為G,連結(jié)EG,

  平面ABCD

  平面ABCD,

  又,平面EGF

  故,所以為二面角E-AC-D的平面角 9分

  又EF,在ACD中,FG

  EG 11分

   12分

  方法二:建立如圖所示的空間直角坐標(biāo)系,

  則C(2,2,0),E(),=(2,2,0),=() 7分

  設(shè)平面ACE的法向量=(x,y,z),則

  

  又平面ACD的法向量為=(0,0,2) 10分

   11分

  由圖可知,二面角的平面角為銳角,

  二面角EACD的余弦值為 12分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知在四棱錐P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,
PA=AD=1,AB=2,E、F分別是AB、PD的中點(diǎn).
(Ⅰ)求證:AF∥平面PEC;
(Ⅱ)求PC與平面ABCD所成角的正切值;
(Ⅲ)求二面角P-EC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖.在四棱錐P一ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底    面ABCD,PD=DC=2,E是PC的中點(diǎn).
(1)證明:PA∥平面EDB;
(2)證明:平面PAC⊥平面PDB;
(3)求三梭錐D一ECB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在四棱錐P一ABCD中,二面角P一AD一B為60°,∠PDA=45°,∠DAB=90°,∠PAD=90°,∠ADC=135°,
(Ⅰ)求證:平面PAB⊥平面ABCD;
(Ⅱ)求PD與平面ABCD所成角的正弦值;
(Ⅲ)求二面角P一CD一B的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P一ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn).PA=PD=AD=2,點(diǎn)M在線段PC上 PM=
13
PC
(1)證明:PA∥平面MQB;
(2)若平面PAD⊥平面ABCD,求二面角M-BQ-C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011—2012學(xué)年浙江省海寧中學(xué)高二期中理科數(shù)學(xué)試卷 題型:解答題

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為正方形,PA=AB=2,M, N分別為PA, BC的中點(diǎn).
(Ⅰ)證明:MN∥平面PCD;
(Ⅱ)求MN與平面PAC所成角的正切值.

查看答案和解析>>

同步練習(xí)冊答案