已知函數(shù)
(I)若函數(shù)上是減函數(shù),求實(shí)數(shù)的最小值;
(2)若,使()成立,求實(shí)數(shù)的取值范圍.
(I) ;(II).
解析試題分析:(I)函數(shù)在上是減函數(shù),即導(dǎo)函數(shù)在恒大于等于,轉(zhuǎn)化為函數(shù)的最值問題,求得的最小值。(II)存在性問題,仍轉(zhuǎn)化為函數(shù)的最值問題,即的最小值小于等于導(dǎo)函數(shù)的最大值加。的最大值易求,的最值問題利用導(dǎo)數(shù)法求最值的方法即可.
試題解析:(I)因在上為減函數(shù),故在上恒成立,
所以當(dāng)時(shí),,又,
設(shè),則,故當(dāng)時(shí),即時(shí),,解得,所以的最小值為.
(II)命題“若使成立”,等價(jià)于“當(dāng)時(shí),有”, 由(I)知,當(dāng)時(shí),,, 問題等價(jià)于:“當(dāng)時(shí),有”,
當(dāng)時(shí),, 在上為減函數(shù),則,故.
當(dāng)時(shí),,由于在上為增函數(shù),故的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/32/0/et9u72.png" style="vertical-align:middle;" />,即,由的單調(diào)性和值域知,唯一,使,且滿足:當(dāng)時(shí),,為減函數(shù);當(dāng)時(shí),,為增函數(shù);由=,,所以,,與矛盾,不合題意.
綜上所述,得.
考點(diǎn): 1、利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的逆用;2、利用導(dǎo)數(shù)求函數(shù)最值的綜合應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(1)若,求的單調(diào)區(qū)間,
(2)當(dāng)時(shí),,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)=,=,若曲線和曲線都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線.
(Ⅰ)求,,,的值;
(Ⅱ)若≥-2時(shí),≤,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(,,且)的圖象在處的切線與軸平行.
(1)確定實(shí)數(shù)、的正、負(fù)號(hào);
(2)若函數(shù)在區(qū)間上有最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
⑴ 求函數(shù)的單調(diào)區(qū)間;
⑵ 如果對(duì)于任意的,總成立,求實(shí)數(shù)的取值范圍;
⑶ 是否存在正實(shí)數(shù),使得:當(dāng)時(shí),不等式恒成立?請(qǐng)給出結(jié)論并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知在處取得極值。
(Ⅰ)證明:;
(Ⅱ)是否存在實(shí)數(shù),使得對(duì)任意?若存在,求的所有值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知.
(Ⅰ)求的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)在上只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),,(1)若,求函數(shù)的極值;
(2)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(3)在函數(shù)的圖象上是否存在不同的兩點(diǎn),使線段的中點(diǎn)的橫坐標(biāo)與直線的斜率之間滿足?若存在,求出;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(I)當(dāng)時(shí),討論的單調(diào)性;
(II)若時(shí),,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com