【題目】如圖,在多面體中,四邊形為正方形,,,.
(1)證明:平面平面.
(2)若平面,二面角為,三棱錐的外接球的球心為,求二面角的余弦值.
【答案】(1)詳見解析;(2).
【解析】
證明平面即可證明平面平面(2)由題確定二面角的平面角為,進(jìn)而推出為線段的中點,以為坐標(biāo)原點建立空間直角坐標(biāo)系由空間向量的線面角公式求解即可
(1)證明:因為四邊形為正方形,
所以,
又,,
所以平面.
因為平面,所以平面平面.
(2)解:由(1)知平面,又,則平面,從而,
又,所以二面角的平面角為.
以為坐標(biāo)原點建立空間直角坐標(biāo)系,如圖所示,
則,,.
因為三棱錐的外接球的球心為,所以為線段的中點,
則的坐標(biāo)為,.
設(shè)平面的法向量為,則,
即令,得.
易知平面的一個法向量為,
則.
由圖可知,二面角為銳角,
故二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底而為正方形,底面,,點為棱的中點,點,分別為棱,上的動點(,與所在棱的端點不重合),且滿足.
(1)證明:平面平面;
(2)當(dāng)三棱錐的體積最大時,求二面角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的圖像關(guān)于直線對稱.
(1)求的值;
(2)判斷并證明函數(shù)在區(qū)間上的單調(diào)性;
(3)若直線與的圖像無公共點,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某校新、老校區(qū)之間開車單程所需時間為,只與道路暢通狀況有關(guān),對其容量為的樣本進(jìn)行統(tǒng)計,結(jié)果如圖:
(分鐘) | 25 | 30 | 35 | 40 |
頻數(shù)(次) | 20 | 30 | 40 | 10 |
(1)求的分布列與數(shù)學(xué)期望;
(2)劉教授駕車從老校區(qū)出發(fā),前往新校區(qū)做一個50分鐘的講座,結(jié)束后立即返回老校區(qū),求劉教授從離開老校區(qū)到返回老校區(qū)共用時間不超過120分鐘的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)高等數(shù)學(xué)這學(xué)期分別用兩種不同的數(shù)學(xué)方式試驗甲、乙兩個大一新班(人數(shù)均為人,入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同;勤奮程度和自覺性都一樣).現(xiàn)隨機(jī)抽取甲、乙兩班各名的高等數(shù)學(xué)期末考試成績,得到莖葉圖:
(1)學(xué)校規(guī)定:成績不得低于85分的為優(yōu)秀,請?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷“能否在犯錯誤率的概率不超過0.025的前提下認(rèn)為成績優(yōu)異與教學(xué)方式有關(guān)?”
下面臨界值表僅供參考:
(參考方式:,其中)
(2)現(xiàn)從甲班高等數(shù)學(xué)成績不得低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績?yōu)?6分的同學(xué)至少有一個被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的普通方程為,曲線參數(shù)方程為(為參數(shù));以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為,.
(1)求的參數(shù)方程和的直角坐標(biāo)方程;
(2)已知是上參數(shù)對應(yīng)的點,為上的點,求中點到直線的距離取得最小值時,點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題錯誤的是( )
A. 命題“若,則”的逆否命題為“若 ,則”
B. 若為假命題,則均為假命題
C. 對于命題:,使得,則:,均有
D. “”是“”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過多年的努力,炎陵黃桃在國內(nèi)乃至國際上逐漸打開了銷路,成為炎陵部分農(nóng)民脫貧致富的好產(chǎn)品.為了更好地銷售,現(xiàn)從某村的黃桃樹上隨機(jī)摘下了100個黃桃進(jìn)行測重,其質(zhì)量分布在區(qū)間內(nèi)(單位:克),統(tǒng)計質(zhì)量的數(shù)據(jù)作出其頻率分布直方圖如圖所示:
(1)按分層抽樣的方法從質(zhì)量落在,的黃桃中隨機(jī)抽取5個,再從這5個黃桃中隨機(jī)抽2個,求這2個黃桃質(zhì)量至少有一個不小于400克的概率;
(2)以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該村的黃桃樹上大約還有100000個黃桃待出售,某電商提出兩種收購方案:
A.所有黃桃均以20元/千克收購;
B.低于350克的黃桃以5元/個收購,高于或等于350克的以9元/個收購.
請你通過計算為該村選擇收益最好的方案.
(參考數(shù)據(jù):)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com