【題目】如圖,在矩形中,,,的中點(diǎn).將沿折起,使折起后平面平面,則異面直線所成角的余弦值為( )

A. B. C. D.

【答案】A

【解析】

由題意,取AB中點(diǎn)F,連接CF,CFAE,可得直線AECD所成角的平面角為∠DCF,結(jié)合已知求解△DCF三邊長度,滿足直角三角形,可得cos∠DCF.

由題意,

AB中點(diǎn)F,連接CF,則CFAE,可得直線AECD所成角的平面角為∠DCF,(如圖)

DDM垂直AEM,平面DAE⊥平面ABCE

ADDE,

DMAE

DM⊥平面ABCE,∴DMMF,

AMDM,結(jié)合平面圖形可得:FM=, ∴DF==1,CF=,

=, ∴=3,

∴在△DFC中,=,

△DFC是直角三角形且DF⊥FC

可得cos∠DCF

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)是拋物線上的動(dòng)點(diǎn),的準(zhǔn)線上的動(dòng)點(diǎn),直線且與為坐標(biāo)原點(diǎn))垂直,則點(diǎn)的距離的最小值的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,平面,邊上一點(diǎn),,.

(1)證明:平面平面.

(2)若,試問:是否與平面平行?若平行,求三棱錐的體積;若不平行,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是( )

A. ”是“”成立的充分不必要條件

B. 命題,則

C. 為了了解800名學(xué)生對(duì)學(xué)校某項(xiàng)教改試驗(yàn)的意見,用系統(tǒng)抽樣的方法從中抽取一個(gè)容量為40的樣本,則分組的組距為40

D. 已知回歸直線的斜率的估計(jì)值為1.23,樣本點(diǎn)的中心為,則回歸直線方程為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù)

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(-4,2)Rt的直角頂點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)Bx軸上.

(1)求直線AB的方程;

(2)求△OAB的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,斜率為的直線經(jīng)過點(diǎn).

(I)求曲線的普通方程和直線的參數(shù)方程;

(II)設(shè)直線與曲線相交于,兩點(diǎn),求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)為了調(diào)查高粱的高度、粒的顏色與產(chǎn)量的關(guān)系,對(duì)700棵高粱進(jìn)行抽樣調(diào)查,得到高度頻數(shù)分布表如下:

表1:紅粒高粱頻數(shù)分布表

農(nóng)作物高度()

頻 數(shù)

2

5

14

13

4

2

表2:白粒高粱頻數(shù)分布表

農(nóng)作物高度()

頻 數(shù)

1

7

12

6

3

1

(1)估計(jì)這700棵高粱中紅粒高粱的棵數(shù);

(2)估計(jì)這700棵高粱中高粱高()在的概率;

(3)在樣本的紅粒高粱中,從高度(單位:)在中任選3棵,設(shè)表示所選3棵中高(單位:)在的棵數(shù),求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,四邊形為正方形,,,.

(1)證明:平面平面.

(2)若平面,二面角,三棱錐的外接球的球心為,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案