【題目】數(shù)學(xué)中的數(shù)形結(jié)合也可以組成世間萬物的絢麗畫面,一些優(yōu)美的曲線是數(shù)學(xué)形象美、對(duì)稱美、和諧美的產(chǎn)物,曲線為四葉玫瑰線,下列結(jié)論正確的有(

1)方程),表示的曲線在第二和第四象限;

2)曲線上任一點(diǎn)到坐標(biāo)原點(diǎn)的距離都不超過2

3)曲線構(gòu)成的四葉玫瑰線面積大于;

4)曲線上有5個(gè)整點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn));

A.1)(2B.1)(2)(3

C.1)(2)(4D.1)(3)(4

【答案】A

【解析】

因?yàn)?/span>,所以異號(hào),僅限與第二和四象限,從而判斷1

利用基本不等式即可判斷2;

將以為圓心、2為半徑的圓的面積與曲線圍成區(qū)域的面積進(jìn)行比較即可判斷3;

先確定曲線經(jīng)過點(diǎn),再將,的整點(diǎn)逐一代入曲線的方程進(jìn)行檢驗(yàn)即可判斷4;

對(duì)于(1),因?yàn)?/span>,所以異號(hào),僅限與第二和四象限,即1正確.

對(duì)于2,因?yàn)?/span>,所以,

所以,

所以,即2正確;

對(duì)于3,以為圓點(diǎn),2為半徑的圓的面積為,顯然曲線圍成的區(qū)域的面積小于圓的面積,即3錯(cuò)誤;

對(duì)于4,只需要考慮曲線在第一象限內(nèi)經(jīng)過的整點(diǎn)即可,把,代入曲線的方程驗(yàn)證可知,等號(hào)不成立,所以曲線在第一象限內(nèi)不經(jīng)過任何整點(diǎn),再結(jié)合曲線的對(duì)稱性可知,曲線只經(jīng)過整點(diǎn),即4錯(cuò)誤;

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是等差數(shù)列,其前項(xiàng)和為,數(shù)列是公比大于0的等比數(shù)列,且 , .

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)令,求數(shù)列的前項(xiàng)和為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,求函數(shù)的極值;

(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)分別是橢圓的左,右焦點(diǎn),兩點(diǎn)分別是橢圓的上,下頂點(diǎn),是等腰直角三角形,延長交橢圓點(diǎn),且的周長為.

1)求橢圓的方程;

2)設(shè)點(diǎn)是橢圓上異于的動(dòng)點(diǎn),直線與直分別相交于兩點(diǎn),點(diǎn),求證:的外接圓恒過原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中記載:將底面為直角三角形的直三棱柱稱為塹堵,將一塹堵沿其一頂點(diǎn)與相對(duì)的棱剖開,得到一個(gè)陽馬(底面是長方形,且有一條側(cè)棱與底面垂直的四棱錐)和一個(gè)鱉臑(四個(gè)面均為直角三角形的四面體).在如圖所示的塹堵中,且有鱉臑C1-ABB1和鱉臑,現(xiàn)將鱉臑沿線BC1翻折,使點(diǎn)C與點(diǎn)B1重合,則鱉臑經(jīng)翻折后,與鱉臑拼接成的幾何體的外接球的表面積是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為實(shí)數(shù),用表示不超過的最大整數(shù),例如,,對(duì)于函數(shù),若存在,使得,則稱函數(shù)是“函數(shù)”.

1)判斷函數(shù)是否是“函數(shù)”;

2)設(shè)函數(shù)是定義在上的周期函數(shù),其最小正周期是,若不是“函數(shù)”,求的最小值;

3)若函數(shù)是“函數(shù)”,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)為,離心率為,過點(diǎn)且垂直于軸的直線被橢圓截得的弦長為1.

1)求橢圓的方程;

2)若直線交橢圓于點(diǎn),兩點(diǎn),與線段和橢圓短軸分別交于兩個(gè)不同點(diǎn),且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)處有最大值,求的值;

2)當(dāng)時(shí),判斷的零點(diǎn)個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線過原點(diǎn)且傾斜角為,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線和直線的極坐標(biāo)方程;

2)若相交于不同的兩點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案