(12分)(I)求函數(shù)圖象上的點(diǎn)處的切線方程;
(Ⅱ)已知函數(shù),其中是自然對數(shù)的底數(shù),
對于任意的,恒成立,求實(shí)數(shù)的取值范圍。
(1) (2)
解析試題分析:解:(Ⅰ); 2分
由題意可知切點(diǎn)的橫坐標(biāo)為1,
所以切線的斜率是, 1分
切點(diǎn)縱坐標(biāo)為,故切點(diǎn)的坐標(biāo)是,
所以切線方程為,即. 2分
(II)問題即, 1分
1)當(dāng)
,所以無解。 (2分)
2)當(dāng)時(shí),得
若,則,
,所以無解。 (2分)
若時(shí),當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增。,
綜上可知 (2分)
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評:根據(jù)導(dǎo)數(shù)求解函數(shù)的單調(diào)性,以及函數(shù) 極值和最值,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)判斷奇偶性, 并求出函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖象經(jīng)過點(diǎn)M(1,4),曲線在點(diǎn)M處的切線恰好與直線垂直。
(1)求實(shí)數(shù)的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,().
(1)求函數(shù)的極值;
(2)已知,函數(shù), ,判斷并證明的單調(diào)性;
(3)設(shè),試比較與,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)曲線在點(diǎn)處的切線斜率為,且,對一切實(shí)數(shù),不等式恒成立.
(1) 求的值;
(2) 求函數(shù)的表達(dá)式;
(3) 求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),
(I)若,求函數(shù)的極小值,
(Ⅱ)若,設(shè),函數(shù).若存在使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
理科(本小題14分)已知函數(shù),當(dāng)時(shí),函數(shù)取得極大值.
(Ⅰ)求實(shí)數(shù)的值;(Ⅱ)已知結(jié)論:若函數(shù)在區(qū)間內(nèi)導(dǎo)數(shù)都存在,且,則存在,使得.試用這個(gè)結(jié)論證明:若,函數(shù),則對任意,都有;(Ⅲ)已知正數(shù)滿足求證:當(dāng),時(shí),對任意大于,且互不相等的實(shí)數(shù),都有
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com