雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的兩個焦點為F1、F2,若P為其上一點,且|PF1|=2|PF2|,則雙曲線離心率的取值范圍為:A.(1,3);B.(1,3];C.(3,+∞);D.[3,+∞)”其正確選項是B.若將其中的條件“|PF1|=2|PF2|”更換為“|PF1|=k|PF2|,k>0且k≠1”,試經(jīng)過合情推理,得出雙曲線離心率的取值范圍是
 
.(用k表示)
分析:開區(qū)間前端點是1,關鍵看后端點的值與|PF2|前邊的系數(shù)的關系,由3=
2+1
|2-1|
,聯(lián)想系數(shù)為k時,后端點是
k+1
|k-1|
,從而得出答案.
解答:解:∵|PF1|=2|PF2|,則雙曲線離心率的取值范圍為:A.(1,3); B.(1,3]; C.(3,+∞); D.[3,+∞)”
其正確選項是B,區(qū)間前端點為1,后端點為3=
3
1
=
2+1
2-1
,
若將其中的條件“|PF1|=2|PF2|”更換為“|PF1|=k|PF2|,k>0且k≠1”,試經(jīng)過合情推理,
得出雙曲線離心率的取值范圍是開區(qū)間,前端點為1,后端點為
k+1
|k-1|
,
∴雙曲線離心率的取值范圍是(1,
k+1
|k-1|
)

故答案為(1,
k+1
|k-1|
)
點評:本題考查合情推理的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若點O和點F(-2,0)分別是雙曲線
x2
a2
-y2=1(a>0)
的中心和左焦點,點P為雙曲線右支上的任意一點,則
OP
FP
的取值范圍為( 。
A、[3-2
3
,+∞)
B、[3+2
3
,+∞)
C、[-
7
4
,+∞)
D、[
7
4
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-y2=1(a>0)
的一條準線方程為x=
3
2
,則a等于
 
,該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設圓C的圓心為雙曲線
x2
a2
-y2=1(a>0)
的左焦點,且與此雙曲線的漸近線相切,若圓C被直線l:x-y+2=0截得的弦長等于
2
,則a等于(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若點O和點F(-2,0)分別是雙曲線
x2
a2
-y2=1(a>0)的中心和左焦點,點P為雙曲線右支上的一點,并且P點與右焦點F′的連線垂直x軸,則線段OP的長為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-y2=1
的一個焦點坐標為(-
3
,0)
,則其漸近線方程為( 。
A、y=±
2
x
B、y=±
2
2
x
C、y=±2x
D、y=±
1
2
x

查看答案和解析>>

同步練習冊答案