A. | y=$\frac{1}{x}$ | B. | y=e-x | C. | y=1-x2 | D. | y=lg|x| |
分析 逐一考查各個選項中函數(shù)的奇偶性、以及在區(qū)間(-∞,0)上的單調(diào)性,從而得出結(jié)論.
解答 解:由于y=$\frac{1}{x}$是奇函數(shù),故排除A;
由于y=e-x不滿足f(-x)=f(x),不是偶函數(shù),故排除B;
由于函數(shù)f(x)=-x2+1是偶函數(shù),且滿足在(-∞,0)上是單調(diào)遞增函數(shù),故C不滿足條件;
由于y=lg|x|,有f(-x)=f(x)是偶函數(shù),且在區(qū)間(-∞,0)上,f(x)=lgx是單調(diào)遞減,故D正確;
故選:D.
點評 本題主要考查函數(shù)的單調(diào)性和奇偶性的綜合應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [3,+∞) | B. | (-∞,3] | C. | (-∞,6] | D. | [6,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | (-∞,$\frac{1}{3}$) | C. | ($\frac{1}{3}$,+∞) | D. | (1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com