分析 g(x)=x2-2ax-5的圖象是開口朝上,且以直線x=a為對稱軸的拋物線,
(1)若函數(shù)g(x)在x∈[0,2]上是單調(diào)增函數(shù),則a≤0;
(2)分類討論給定區(qū)間與對稱軸x=a的關(guān)系,結(jié)合二次函數(shù)的圖象和性質(zhì),可得結(jié)論.
解答 解:(1)∵f(x)=-x2+2x+5,
∴g(x)=(2-2a)x-f(x)=x2-2ax-5的圖象是開口朝上,且以直線x=a為對稱軸的拋物線,
若函數(shù)g(x)在x∈[0,2]上是單調(diào)增函數(shù),
則a≤0----------------5
(2)∵g(x)=x2-2ax-5的圖象是開口朝上,且以直線x=a為對稱軸的拋物線,
若a<0,則當(dāng)x=0時(shí),函數(shù)g(x)取最小值-5,
若0≤a≤2,則當(dāng)x=a時(shí),函數(shù)g(x)取最小值-a2-5,
若a>2,則當(dāng)x=2時(shí),函數(shù)g(x)取最小值-4a-15,
綜上所述:g(x)min=$\left\{\begin{array}{l}-5,a<0\\-{a}^{2}-5,0≤a≤2\\-4a-1,a>2\end{array}\right.$.------------12
點(diǎn)評 本題考查的知識點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\frac{{\sqrt{5}+3}}{2}$ | C. | $\frac{{\sqrt{5}+1}}{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a∥α,b∥α,則a∥b | B. | 若a⊥α,a∥b,則b⊥α | ||
C. | 若α∥β,a?α,b?β則a∥b | D. | 若a∥α,a⊥b,則b⊥α |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 4 | C. | 3$\sqrt{3}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com