2.在同一坐標(biāo)系中,曲線$\frac{x^2}{16}+\frac{y^2}{9}$=1經(jīng)過伸縮變換$\left\{\begin{array}{l}{x^'}=\frac{1}{4}x\\{y^'}=\frac{1}{3}y\end{array}$后,得到的曲線的方程是(  )
A.$\frac{{{x^'}^2}}{4}+\frac{{{y^'}^2}}{3}=1$B.$\frac{{{y^'}^2}}{4}+\frac{{{x^'}^2}}{3}=1$C.x'2+y'2=1D.x'2+y'2=12

分析 將$\left\{\begin{array}{l}{x=4x′}\\{y=3y′}\end{array}\right.$代入曲線$\frac{x^2}{16}+\frac{y^2}{9}$=1,整理即可得到答案.

解答 解:將$\left\{\begin{array}{l}{x=4x′}\\{y=3y′}\end{array}\right.$代入曲線$\frac{x^2}{16}+\frac{y^2}{9}$=1,整理得:x′2+y′2=1,
故答案選:C.

點(diǎn)評(píng) 本題考查曲線的變換,只要用x′,y′表示x,y,再代入原曲線方程就可得到答案,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.隨機(jī)變量X只能取1,2,3,且P(X=1)=P(x=3),則E(X)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=($\frac{1}{3}$)x,
(1)當(dāng)x∈[-1,1]時(shí),求函數(shù)y=[f(x)]2-2af(x)+3的最小值g(a);
(2)是否存在實(shí)數(shù)m>n>3,使得g(x)的定義域?yàn)閇n,m],值域?yàn)閇n2,m2]?若存在,求出m、n的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1坐標(biāo)原點(diǎn)為點(diǎn)O,有頂點(diǎn)坐標(biāo)為(2,0),離心率e=$\frac{{\sqrt{3}}}{2}$,過橢圓右焦點(diǎn)傾斜角為30°的直線交橢圓與點(diǎn)A,B兩點(diǎn).
(1)求橢圓的方程.
(2)求三角形OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.已知曲線C的極坐標(biāo)方程是ρcosθ+ρsinθ=1,曲線D的參數(shù)方程是:$\left\{\begin{array}{l}{x=2-cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)).
(1)求曲線C與曲線D的直角坐標(biāo)方程;
(2)若曲線C與曲線D相交于A、B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=cosx-lnx,實(shí)數(shù)a,b,c滿足f(a)f(b)f(c)<0(0<a<b<c<π),若實(shí)數(shù)x0是f(x)=0的根,那么下列不等式中不可能成立的是( 。
A.x0<cB.x0>cC.x0<bD.x0>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=sin(ωx+φ)(ω>0,-π<φ<0)的兩個(gè)相鄰的對(duì)稱中心分別為(${\frac{π}{8}$,0),(${\frac{5π}{8}$,0).
(Ⅰ)求f(x)的解析式及其對(duì)稱軸方程;
(Ⅱ)利用五點(diǎn)法畫出函數(shù)f(x)在[$\frac{π}{8}$,$\frac{9π}{8}}$]上的簡圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,1),P是動(dòng)點(diǎn),且三角形POA的三邊所在直線的斜率滿足kOP+kOA=kPA.求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.復(fù)數(shù)$\frac{1+\sqrt{3}i}{\sqrt{3}-i}$的共軛復(fù)數(shù)等于( 。
A.iB.-iC.$\sqrt{3}$+iD.$\sqrt{3}$-i

查看答案和解析>>

同步練習(xí)冊答案