9.復(fù)數(shù)$\frac{1+\sqrt{3}i}{\sqrt{3}-i}$的共軛復(fù)數(shù)等于( 。
A.iB.-iC.$\sqrt{3}$+iD.$\sqrt{3}$-i

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運算化簡復(fù)數(shù)$\frac{1+\sqrt{3}i}{\sqrt{3}-i}$,則復(fù)數(shù)$\frac{1+\sqrt{3}i}{\sqrt{3}-i}$的共軛復(fù)數(shù)可求.

解答 解:$\frac{1+\sqrt{3}i}{\sqrt{3}-i}$=$\frac{(1+\sqrt{3}i)(\sqrt{3}+i)}{(\sqrt{3}-i)(\sqrt{3}+i)}=\frac{4i}{4}=i$,
則復(fù)數(shù)$\frac{1+\sqrt{3}i}{\sqrt{3}-i}$的共軛復(fù)數(shù)等于:-i.
故選:B.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在同一坐標系中,曲線$\frac{x^2}{16}+\frac{y^2}{9}$=1經(jīng)過伸縮變換$\left\{\begin{array}{l}{x^'}=\frac{1}{4}x\\{y^'}=\frac{1}{3}y\end{array}$后,得到的曲線的方程是(  )
A.$\frac{{{x^'}^2}}{4}+\frac{{{y^'}^2}}{3}=1$B.$\frac{{{y^'}^2}}{4}+\frac{{{x^'}^2}}{3}=1$C.x'2+y'2=1D.x'2+y'2=12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知在△ABC中,角A、B、C的對邊分別為a、b、c,向量$\overrightarrow m$=(b,c-2a),$\overrightarrow n$=(2cosC,1),且|$\overrightarrow m$+$\overrightarrow n$|=|$\overrightarrow m$-$\overrightarrow n$|.
(I)求∠B的大。
(II)若b=2,求△ABC面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在△ABC中,AB=2,AC=3,$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BC}$,則$\overrightarrow{AD}$•$\overrightarrow{BD}$=$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)等差數(shù)列{an}的前n項和為Sn,若S4=8,S8=20,求此等差數(shù)列的首項a1和公差d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=($\frac{1}{2}$)x-log${\;}_{\frac{1}{2}}$x的零點所在的區(qū)間是( 。
A.(0,$\frac{1}{4}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.正棱錐S-ABCD的底面邊長為4,高為1,求:
(1)棱錐的側(cè)棱長和斜高;
(2)棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知焦點在x軸上的橢圓(中心在原點)兩個焦點分別是F1、F2,與x軸左右兩個交點分別是A1,A2,且|A1F1|=3,|A2F1|=5,則橢圓的離心率是(  )
A.$\frac{1}{4}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.直線y=3與函數(shù)y=|x2-6x|圖象的交點個數(shù)為4.

查看答案和解析>>

同步練習(xí)冊答案