已知a、b、x為正數(shù),且lg(bx)•lg(ax)+1=0,求
a
b
的取值范圍.
考點:對數(shù)的運算性質
專題:函數(shù)的性質及應用
分析:由已知條件推導出方程(lgx)2+(lga+lgb)lgx+1+lgalgb=0 有解,所以△=(lga+lgb)2-4lgalgb-4≥0,由此能求出
a
b
的取值范圍.
解答: 解:∵a、b、x為正數(shù),且lg(bx)•lg(ax)+1=0,
∴(lga+lgx)(lgb+lgx)+1=0
整理得(lgx)2+(lga+lgb)lgx+1+lgalgb=0,
∵這個方程有解,
∴△=(lga+lgb)2-4lgalgb-4≥0
(lga)2+2lgalgb+(lgb)2-4lgalgb-4≥0
(lga-lgb)2≥4
lga-lgb≥2或 lga-lgb≤-2
lg(a-b)≥2或 lga/b≤-2
a
b
≥100 或0<
a
b
1
100

a
b
的取值范圍是(0,
1
100
)∪[100,+∞).
點評:本題考查兩個實數(shù)的取值范圍的求法,是中檔題,解題時要認真審題,注意對數(shù)的運算性質的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在如圖所示的莖葉圖中,中位數(shù)和眾數(shù)分別是( 。
A、93,92
B、92,93
C、91,93
D、93,93

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
1
2
(ex-e-x)(e是自然對數(shù)的底數(shù))
(1)判斷函數(shù)f(x)的奇偶性;
(2)求f-1
3
4
)的值;
(3)求使f(x)=a有解的常數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設符號“@”是數(shù)集A中的一種運算,如果對于任意x,y∈A,都有x@y∈A,則稱運算@對集合A是封閉的.設A=(x|x=m+
2
n,m,n∈Z),判斷A對通常的實數(shù)的乘法運算是否封閉.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx,是否存在最小正常數(shù)m,使得a>m時,對任意正實數(shù)x,不等式f(a+x)<f(a)•ex恒成立?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

試求最小的正數(shù)a,使得存在正數(shù)b,當x∈[0,1]時,恒有
1-x
+
1+x
≤2-bxa
;對于所求得的a,確定滿足上述不等式的最大正數(shù)b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=sin(4x+
π
2
),求該函數(shù)在[0,2π]的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,長度為3的線段AB的端點A、B分別在x,y軸上滑動,點M在線段AB上,且|AM|=2|MB|,
(1)若點M的軌跡為曲線C,求其方程;
(2)過點P(0,1)的直線l與曲線C交于不同兩點E、F,N是曲線上不同于E、F的動點,求△NEF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A為大小為60°的二面角α-l-β的棱上一點,長度為a的線段AB在平面α內(nèi),且與直線l成45°角,求線段AB與平面β所成角的大小.

查看答案和解析>>

同步練習冊答案