已知數(shù)列{an}滿足:a1=0且
1
1-an+1
-
1
1-an
=1.
(1)求{an}的通項公式;
(2)令bn=
1-
an+1
n
(n∈N+),數(shù)列{bn}的前n項和為Sn,證明:Sn<1.
考點:數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)條件構(gòu)造等差數(shù)列,利用等差數(shù)列的通項公式即可求{an}的通項公式;
(2)求出數(shù)列{bn}的通項公式,利用裂項法進(jìn)行求和.
解答: 解:(1)∵
1
1-an+1
-
1
1-an
=1.
∴{
1
1-an
}是公差為1的等差數(shù)列,
1
1-a1
=1
,
1
1-an
=1+n-1=n,
故an=1-
1
n

(2)由(1)得bn=
1-
an+1
n
=
n+1
-
n
n+1
n
=
1
n
-
1
n+1

則Sn=b1+b2+…+bn=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
<1.
點評:本題主要考查數(shù)列的通項公式以及數(shù)列求和,利用構(gòu)造法以及裂項法是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B為拋物線x2=2py(p>0)上兩點,直線AB過焦點F,A、B在準(zhǔn)線上的射影分別為C、D,則
CF
DF
=0;
②存在實數(shù)λ使得
AD
AO
(點O為坐標(biāo)原點);
③若線段AB的中點P在準(zhǔn)線上的射影為T,有
FT
AB
=0;
④拋物線在A點的切線和在B點切線一定相交,并且相互垂直.
其中說法正確的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(
x
-
3
x
)n
的展開式的各項系數(shù)絕對值之和為1024,則展開式中x項的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=
(n+2)
a
2
n
-nan+n+1
a
2
n
+1
(n∈N*),Sn是數(shù)列{an}的前n項和.
(1)若a1=1,求a2,a3,a4并推證數(shù)列{an}的通項公式;
(2)若a1∈[
1
2
3
2
],求證:|Sn-
n(n+1)
2
|<1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
=(1,1),2
a
+
b
=(4,2)
,則向量
a
,
b
的夾角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an},滿足對任意的n∈N+,均有an+an+1+an+2為定值.若a7=2,a9=3,a98=4,則數(shù)列{an}的前100項的和S100=( 。
A、132B、299
C、68D、99

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠產(chǎn)生的廢氣經(jīng)過過濾后排放,過濾過程中廢氣的污染物數(shù)量Pmg/L與時間th間的關(guān)系為P=P0e-kt.如果在前5個小時消除了10%的污染物,試回答:
(1)10個小時后還剩百分之幾的污染物?
(2)污染物減少50%需要花多少時間(精確到1h)?
(3)畫出污染物數(shù)量關(guān)于時間變化的函數(shù)圖象,并在圖象上表示計算結(jié)果.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[-2,2]上隨機(jī)取一個數(shù)x,則事件“|x+1|<1“發(fā)生的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b為正數(shù),a+b=1,求
ab+1
ab
的最小值.

查看答案和解析>>

同步練習(xí)冊答案