若函數(shù)y=f(x)是定義在區(qū)間[-3,3]上的偶函數(shù),且在[-3,0]上單調(diào)遞增,若實(shí)數(shù)a滿足f(2a-1)<f(a2),求a的取值范圍.
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:易判斷f(x)在[0,3]上的單調(diào)性,可判斷a2<|2a-1|≤3,分2a-1≥0,2a-1<0兩種情況進(jìn)行討論,利用單調(diào)性去掉符號(hào)“f”,解二次不等式可得.
解答: 解:∵f(x)是偶函數(shù),且在[-3,0]上單調(diào)遞增,
∴f(x)在[0,3]上單調(diào)遞減,
∵a2<|2a-1|≤3,
當(dāng)2a-1≥0,即a
1
2
時(shí),由a2<2a-1≤3,無(wú)解;
當(dāng)2a-1<0,即a<
1
2
時(shí),由a2<-2a+1≤3得-1≤a<-1+
2

綜上,實(shí)數(shù)a的取值范圍是[-1,-1+
2
).
點(diǎn)評(píng):本題考查函數(shù)的奇偶性、單調(diào)性及其綜合應(yīng)用,考查抽象不等式的求解,考查轉(zhuǎn)化思想,考查學(xué)生分析解決問(wèn)題的能力,利用函數(shù)性質(zhì)化抽象不等式為具體不等式是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,a1=-2,a2+a8=16,求其前11項(xiàng)的和s11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地為發(fā)展旅游業(yè),在旅游手冊(cè)中給出了當(dāng)?shù)匾荒?2個(gè)月每個(gè)月的平均氣溫如圖所示(氣溫單位:℃).根據(jù)圖中提供的數(shù)據(jù),試用y=Asin(ωt+φ)+b近似地?cái)M合出月平均氣溫與時(shí)間(單位:月)的函數(shù)關(guān)系,并求出其周期和振幅、氣溫達(dá)到最大值與最小值的時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知頂點(diǎn)為原點(diǎn)O的拋物線C1的焦點(diǎn)F與橢圓C2
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)重合,C1與C2在第一和第四象限的交點(diǎn)分別為A、B.
(1)若△AOB是邊長(zhǎng)為2
3
的正三角形,求拋物線C1的方程;
(2)若AF⊥OF,求橢圓C2的離心率e;
(3)點(diǎn)P為橢圓C2上的任一點(diǎn),若直線AP、BP分別與x軸交于點(diǎn)M(m,0)和N(n,0),證明:mn=a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sinαcosα<0,sinαtanα<0,化簡(jiǎn):sin2αtanα+
cos2α
tanα
+2sinαcosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x,y∈R且x2+y2=1,則x-y的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-1,如f(x0)<1,則x0的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB是圓O的直徑,點(diǎn)C在圓O上,延長(zhǎng)BC到D使BC=CD,過(guò)C作圓O的切線交AD于E.若AB=8,DC=4,則DE=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+bx2+cx+d(b,c,d為常數(shù)),當(dāng)k∈(-∞,0)∪(4,+∞)時(shí),f(x)=k只有一個(gè)實(shí)根;當(dāng)k∈(0,4)時(shí),f(x)=k只有3個(gè)實(shí)根.現(xiàn)給出下列4個(gè)命題:
①f(x)=4和f′(x)=0有一個(gè)相同的實(shí)根;
②f(x)=0和f′(x)=0有一個(gè)相同的實(shí)根;
③f(x)=3的任一實(shí)根大于f(x)=1的任一實(shí)根;
④f(x)=-5的任一實(shí)根小于f(x)=2的任一實(shí)根.
其中正確命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案