分析 (1)曲線C1在平面直角坐標(biāo)系中的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{\sqrt{5}}{5}t}\\{y=\frac{2\sqrt{5}}{5}t-1}\end{array}\right.$(t為參數(shù)),消去參數(shù)t可得普通方程.由曲線C2:ρ=2cosθ-4sinθ,即ρ2=ρ(2cosθ-4sinθ),利用互化公式可得直角坐標(biāo)方程.
(2)x2+y2=2x-4y.化為(x-1)2+(y+2)2=5.可得圓心C2(1,-2),半徑r=$\sqrt{5}$.求出圓心到直線的距離d,可得曲線C1和C2兩交點(diǎn)之間的距離=2$\sqrt{{r}^{2}-uck1odo^{2}}$.
解答 解:(1)曲線C1在平面直角坐標(biāo)系中的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{\sqrt{5}}{5}t}\\{y=\frac{2\sqrt{5}}{5}t-1}\end{array}\right.$(t為參數(shù)),消去參數(shù)t可得普通方程:y=2x-1.
由曲線C2:ρ=2cosθ-4sinθ,即ρ2=ρ(2cosθ-4sinθ),可得直角坐標(biāo)方程:x2+y2=2x-4y.
(2)x2+y2=2x-4y.化為(x-1)2+(y+2)2=5.可得圓心C2(1,-2),半徑r=$\sqrt{5}$.
∴曲線C1和C2兩交點(diǎn)之間的距離=2$\sqrt{5-(\frac{2+2-1}{\sqrt{{1}^{2}+{2}^{2}}})^{2}}$=$\frac{8\sqrt{5}}{5}$.
點(diǎn)評(píng) 本題考查了參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程、直線與圓相交弦長(zhǎng)問(wèn)題、點(diǎn)到直線的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | 2 | C. | $\frac{8}{3}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{1}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $20+4\sqrt{5}$ | B. | $12+4\sqrt{5}$ | C. | $20+2\sqrt{5}$ | D. | $12+2\sqrt{5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com