設(shè)動(dòng)點(diǎn)P到點(diǎn)A(-1,0)和B(1,0)的距離分別為d1和d2,,且存在常數(shù)λ(0<λ<1),使得

(1)證明:動(dòng)點(diǎn)P的軌跡C為雙曲線(xiàn),并求出C的方程;

(2)過(guò)點(diǎn)B作直線(xiàn)雙曲線(xiàn)C的右支于M,N兩點(diǎn),試確定λ的范圍,使,其中點(diǎn)O為坐標(biāo)原點(diǎn).

答案:
解析:

  解法一:(1)在中,

  即,

  ,

  即(常數(shù)),

  點(diǎn)的軌跡是以為焦點(diǎn),實(shí)軸長(zhǎng)的雙曲線(xiàn).

  方程為:

  (2)設(shè),

  ①當(dāng)垂直于軸時(shí),的方程為,,在雙曲線(xiàn)上.

  即,因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/0816/0021/db2d9c32b3d8feafdf01b0198dd65341/C/Image248.gif" width=58 HEIGHT=19>,所以

 、诋(dāng)不垂直于軸時(shí),設(shè)的方程為

  由得:

  ,

  由題意知:,

  所以

  于是:

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/0816/0021/db2d9c32b3d8feafdf01b0198dd65341/C/Image260.gif" width=84 height=22>,且在雙曲線(xiàn)右支上,所以

  

  由①②知,

  解法二:(1)同解法一

  (2)設(shè),,的中點(diǎn)為

 、佼(dāng)時(shí),,

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/0816/0021/db2d9c32b3d8feafdf01b0198dd65341/C/Image269.gif" width=58 HEIGHT=19>,所以;

 、诋(dāng)時(shí),

  又.所以;

  由,得,由第二定義得

  

  所以

  于是由,得

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/0816/0021/db2d9c32b3d8feafdf01b0198dd65341/C/Image282.gif" width=40 HEIGHT=24>,所以,又

  解得:.由①②知


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)動(dòng)點(diǎn)P到點(diǎn)A(-1,0)和B(1,0)的距離分別為d1和d2,∠APB=2θ,且存在常數(shù)λ(0<λ<1),使得d1d2sin2θ=λ.
(1)證明:動(dòng)點(diǎn)P的軌跡C為雙曲線(xiàn),并求出C的方程;
(2)過(guò)點(diǎn)B作直線(xiàn)雙曲線(xiàn)C的右支于M,N兩點(diǎn),試確定λ的范圍,使
OM
ON
=0
,其中點(diǎn)O為坐標(biāo)原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

(2007江西,21)設(shè)動(dòng)點(diǎn)P到點(diǎn)A(1,0)B(1,0)的距離分別為,∠APB=2θ,且存在常數(shù)λ(0<λ<1),使得

(1)證明:動(dòng)點(diǎn)P的軌跡C為雙曲線(xiàn),并求出C的方程;

(2)過(guò)點(diǎn)B作直線(xiàn)交雙曲線(xiàn)C的右支于M、N兩點(diǎn),試確定λ的范圍,使,其中點(diǎn)O為坐標(biāo)原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:吉林省長(zhǎng)春市十一高2011-2012學(xué)年高二下學(xué)期期中考試數(shù)學(xué)理科試題 題型:013

設(shè)動(dòng)點(diǎn)P到點(diǎn)A(-1,0)和B(1,0)的距離分別為d1和d2,∠APB=2,且存在常數(shù)λ(0<λ<1),使得.(如圖所示)那么點(diǎn)P的軌跡是

[  ]

A.

B.橢圓

C.雙曲線(xiàn)

D.拋物線(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年江西省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)動(dòng)點(diǎn)P到點(diǎn)A(-1,0)和B(1,0)的距離分別為d1和d2,∠APB=2θ,且存在常數(shù)λ(0<λ<1),使得d1d2sin2θ=λ.
(1)證明:動(dòng)點(diǎn)P的軌跡C為雙曲線(xiàn),并求出C的方程;
(2)過(guò)點(diǎn)B作直線(xiàn)雙曲線(xiàn)C的右支于M,N兩點(diǎn),試確定λ的范圍,使,其中點(diǎn)O為坐標(biāo)原點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案