分析 假設(shè)an是數(shù)列{an}的項(xiàng)取最大值,根據(jù)條件建立不等式$\left\{\begin{array}{l}{{a}_{n+1}≤{a}_{n}}\\{{a}_{n-1}≤{a}_{n}}\end{array}\right.$,進(jìn)行求解即可.
解答 解:假設(shè)an是數(shù)列{an}的項(xiàng)取最大值,
則($\frac{10}{11}$)n+1(3n+16)≤($\frac{10}{11}$)n(3n+13),
且($\frac{10}{11}$)n-1(3n+10)≤($\frac{10}{11}$)n(3n+13),
即n≥$\frac{17}{3}$且n≤$\frac{20}{3}$,
∵n是整數(shù),
∴n=6,
故答案為:6
點(diǎn)評(píng) 本題主要考查數(shù)列的函數(shù)的性質(zhì)的應(yīng)用,根據(jù)條件建立不等式$\left\{\begin{array}{l}{{a}_{n+1}≤{a}_{n}}\\{{a}_{n-1}≤{a}_{n}}\end{array}\right.$的關(guān)系是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(0,\frac{2}{ln2})$ | B. | $(-∞,0),(\frac{2}{ln2},+∞)$ | C. | $(-∞,\frac{2}{ln2})$ | D. | $(\frac{2}{ln2},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②③ | B. | ②③④ | C. | ①②④ | D. | ①②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,+∞) | B. | [0,+∞) | C. | (0,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\sqrt{3}$ | C. | 3 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${d_n}=\frac{{{c_1}+{c_2}+…+{c_n}}}{n}$ | B. | ${d_n}=\frac{{{c_1}•{c_2}{•_{\;}}{…_{\;}}•{c_n}}}{n}$ | ||
C. | ${d_n}=\root{n}{{{c_1}•{c_2}{•_{\;}}{…_{\;}}•{c_n}}}$ | D. | ${d_n}=\root{n}{{\frac{{{c_1}^n•{c_2}^n{•_{\;}}{…_{\;}}•{c_n}^n}}{n}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com