17.一個多面體的三視圖如圖所示,則此多面體的外接球的表面積為( 。
A.$\sqrt{14}π$B.14πC.$\sqrt{7}π$D.

分析 由三視圖知,可得該幾何體是3條側(cè)棱互相垂直的三棱錐,將其擴充為長方體,長寬高分別為1,2,3,求出三棱錐外接球的半徑,從而求出外接球的表面積.

解答 解:由已知,可得該幾何體是3條側(cè)棱互相垂直的三棱錐,將其擴充為長方體,長寬高分別為1,2,3,
其對角線長為$\sqrt{1+4+9}$=$\sqrt{14}$,多面體的外接球的直徑等于長方體的對角線長.
∴多面體的外接球的半徑為$\frac{\sqrt{14}}{2}$,
∴多面體的外接球的表面積為S=4πR2=4π×($\frac{\sqrt{14}}{2}$)2=14π.
故選:B

點評 本題考查了由三視圖求幾何體外接球的表面積,解題的關鍵是判斷幾何體的形狀及外接球的半徑,是綜合性題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.設直線l:$\left\{\begin{array}{l}{x=1+\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$(t為參數(shù)),曲線C1:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),直線l與曲線C1交于A,B兩點,則|AB|=$\frac{6}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,⊙O與⊙P相交于A,B兩點,點P在⊙O上,⊙O的弦BC切⊙P于點B,CP及其延長線交⊙P于D,E兩點,過點E作EF⊥CE交CB的延長線于點F.
(1)求證:PB•CB=CD•EF;
(2)若CD=2,CB=2$\sqrt{2}$,求△CEF的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.(1)正實數(shù)x、y滿足x+2y=xy,且x+2y>m2+2m恒成立,試確定實數(shù)m的取值范圍;
(2)已知a、b、c均為正數(shù),且a+b+c=1,求證:$\frac{1}{a}+\frac{1}+\frac{1}{c}$≥9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.計算
(1)(5-6i)+(-2-i)-(3+4i)
(2)$\frac{1-i}{1+i}$+i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.定義在(0,+∞)上的函數(shù)f(x),滿足f(mn)=f(m)+f(n)(m,n>0),且當x>1時,f(x)>0.
①f(1)=0;  
②f($\frac{m}{n}$)=f(m)-f(n);
③若f(2)=1,不等式f(x+2)-f(2x)>2的解集為(0,$\frac{2}{7}$);    
④f(x)在(0,+∞)上單調(diào)遞減;
⑤f($\frac{m+n}{2}$)≥$\frac{f(m)+f(n)}{2}$.
以上說法正確的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知f(cosx)=3x,(x∈[0,π])那么f(sin$\frac{π}{5}$)=(  )
A.$\frac{3π}{5}$B.$\frac{2π}{5}$C.$\frac{3π}{10}$D.$\frac{9π}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于N,過N點的切線CA的延長線于P.
(1)求證:PM2=PA•PC;
(2)若⊙O的半徑為$2\sqrt{3},OA=OM$,求MN的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知C點在⊙O直徑BE的延長線上,CA切⊙O于A點,CD是∠ACB的平分線且交AE于點F,交AB于點D.
(1)求∠ADF的度數(shù);
(2)若AB=AC,求$\frac{AC}{BC}$的值.

查看答案和解析>>

同步練習冊答案