7.設(shè)直線l:$\left\{\begin{array}{l}{x=1+\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$(t為參數(shù)),曲線C1:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),直線l與曲線C1交于A,B兩點,則|AB|=$\frac{6}{5}$.

分析 由曲線C1:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),利用cos2θ+sin2θ=1即可化為直角坐標(biāo)方程.直線l:$\left\{\begin{array}{l}{x=1+\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$(t為參數(shù)),消去參數(shù)化為普通方程.求出圓心C1(0,0)到直線l的距離d,利用弦長、弦心距、半徑的關(guān)系即可得出.

解答 解:由曲線C1:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),化為x2+y2=1,

直線l:$\left\{\begin{array}{l}{x=1+\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$(t為參數(shù)),消去參數(shù)化為4x-3y-4=0.
∴圓心C1(0,0)到直線l的距離d=$\frac{|-4|}{\sqrt{{4}^{2}+(-3)^{2}}}$=$\frac{4}{5}$.
∴|AB|=2$\sqrt{1-(\frac{4}{5})^{2}}$=$\frac{6}{5}$.
故答案為:$\frac{6}{5}$.

點評 本題考查了參數(shù)方程化為普通方程、直線與圓的相交弦長問題、點到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知△ABC的頂點A(1,3),AB邊上的中線CM所在直線方程為2x-3y+2=0,AC邊上的高BH所在直線方程為2x+3y-9=0.求:
(1)直線BC的方程;
(2)△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,正方體ABCD-A1B1C1D1的棱長為$\sqrt{3}$,以頂點A為球心,2為半徑作一個球,則圖中球面與正方體的表面相交所得到的兩段弧長之和($\widehat{GF}$+$\widehat{EF}$)等于$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)過曲線f(x)=ex+x(e為自然對數(shù)的底數(shù))上任意一點處的切線為l1,總存在過曲線g(x)=2cosx-ax上一點處的切線l2,使得l1⊥l2,則實數(shù)a的取值范圍為[-1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖所示的程序框圖,輸出的S值為( 。
A.$\frac{13}{16}$B.$\frac{13}{12}$C.$\frac{13}{8}$D.$\frac{13}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={(x,y)|y=x+1},B={(x,y)|y=3-2x},則A∩B=( 。
A.{(${\frac{2}{3}$,$\frac{5}{3}})$)}B.($\frac{2}{3}$,$\frac{5}{3}}$)C.{${\frac{2}{3}$,$\frac{5}{3}}$}D.{(${\frac{2}{3}$,$\frac{5}{3}}$),(-$\frac{2}{3}$,-$\frac{5}{3}}$)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,點M是邊BC的中點.若∠A=120°,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-$\frac{1}{2}$,則|${\overrightarrow{AM}}$|的最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖所示陰影部分的面積為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.一個多面體的三視圖如圖所示,則此多面體的外接球的表面積為( 。
A.$\sqrt{14}π$B.14πC.$\sqrt{7}π$D.

查看答案和解析>>

同步練習(xí)冊答案