17.已知圓M過定點(diǎn)(0,1)且圓心M在拋物線y=$\frac{1}{2}$x2上運(yùn)動(dòng),若x軸截圓M所得的弦為|PQ|,則弦長|PQ|等于( 。
A.$\sqrt{2}$B.2C.3D.4

分析 求得圓的方程,令y=0,求得P和Q坐標(biāo),即可求得弦長|PQ|.

解答 解:M(x,$\frac{1}{2}$x2),則r2=a2+($\frac{1}{2}$a2-1)2,
∴圓的方程為:(x-a)2+(y-$\frac{1}{2}$a2)=a2+($\frac{1}{2}$a2-1)2
令y=0,解得:x=a±1,
則丨PQ丨=(a+1)-(a-1)=2,
故選B.

點(diǎn)評 本題考查拋物線的簡單幾何性質(zhì),圓的標(biāo)準(zhǔn)方程,弦長公式,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x≥0\\ x≤y\\ x+y≥2\end{array}\right.$,則z=2x+y的最小值是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,以銳角△ABC的邊BC為直徑的半圓分別與AC、AB交于點(diǎn)D、E,BD、CE的交點(diǎn)為H,且BC=2.
(Ⅰ)證明:AB•CD=BD•HC;
(Ⅱ)求BE•BA+CD•CA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸.建立極坐標(biāo)系設(shè)曲線C:$\left\{\begin{array}{l}{x=5cosα}\\{y=3sinα}\end{array}\right.$(α為參數(shù)),宣線l:ρ(4cosθ-5sinθ)+40=0
(Ⅰ)寫出曲線C的普通方程和直線l的直角坐標(biāo)方程
(Ⅱ)求曲線C上的點(diǎn)到直線l的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.我們知道:在長方形ABCD中,如果設(shè)AB=a,BC=b,那么長方形ABCD的外接圓的半徑R滿足:4R2=a2+b2,類比上述結(jié)論回答:在長方體ABCD-A1B1C1D1中,如果設(shè)AB=a,AD=b,AA1=c,那么長方體ABCD-A1B1C1D1的外接球的半徑R滿足的關(guān)系式是4R2=a2+b2+c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知復(fù)數(shù)z=3+4i,則|z|等于( 。
A.25B.12C.7D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)F是橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)焦點(diǎn),P是C上的點(diǎn),圓x2+y2=$\frac{{a}^{2}}{9}$與線段PF交于A、B兩點(diǎn),若A、B三等分線段PF,則C的離心率為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{5}}{3}$C.$\frac{\sqrt{10}}{4}$D.$\frac{\sqrt{17}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某大廈有一部電梯,若該電梯在底層有5個(gè)乘客,且每位乘客在第10層下電梯的概率為$\frac{1}{3}$,用ξ表示5位乘客在第10層下電梯的人數(shù),則隨機(jī)變量ξ的期望E(ξ)=$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在正項(xiàng)等差數(shù)列{an}中a1和a4是方程x2-10x+16=0的兩個(gè)根,若數(shù)列{log2an}的前5項(xiàng)和為S5且S5∈[n,n+1],n∈Z,則n=11.

查看答案和解析>>

同步練習(xí)冊答案