5.函數(shù)y=log5(1-x)的定義域是( 。
A.(1,+∞)B.(-∞,1)C.(-1,1)D.(-∞,1]

分析 由對數(shù)式的真數(shù)大于0求得答案.

解答 解:要使原函數(shù)有意義,則1-x>0,解得x<1.
∴函數(shù)y=log5(1-x)的定義域是(-∞,1).
故選:B.

點(diǎn)評 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.將函數(shù)y=2sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{1}{4}$個(gè)周期后,所得圖象對應(yīng)的函數(shù)為y=2sin(2x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=x+$\frac{3}{x}$在[1,2]上的值域是[$2\sqrt{3},4$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.等差數(shù)列{an}中,a2=3,a5=9,求前10項(xiàng)的和S10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=a(x-1)2+lnx,a∈R.
(Ⅰ)當(dāng)a=-$\frac{1}{4}$時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)≤x-1對?x∈[1,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某校從參加高二年級學(xué)業(yè)水平測試的學(xué)生中抽出80名學(xué)生,其數(shù)學(xué)成績(均為整數(shù))的頻率分布直方圖如圖所示.估計(jì)這次測試中數(shù)學(xué)成績的平均分為72.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=loga(2x-3)+$\frac{\sqrt{2}}{2}$(a>0且a≠1)的圖象恒過定點(diǎn)P,P在冪函數(shù)f(x)的圖象上,則f(9)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知A(-2,0),B(2,0),且△ABM的周長等于$2\sqrt{6}+4$.
(1)求動點(diǎn)M的軌跡G的方程;
(2)已知點(diǎn)C,D分別為動直線y=k(x-2)(k≠0)與軌跡G的兩個(gè)交點(diǎn),問在x軸上是否存在定點(diǎn)E,使$\overrightarrow{EC}•\overrightarrow{ED}$為定值?若存在,試求出點(diǎn)E的坐標(biāo)和定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=2,S5=15,數(shù)列{bn}的前n項(xiàng)和為Tn,且$b_1^{\;}=\frac{1}{2}$,2nbn+1=(n+1)bn(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式an及前n項(xiàng)和Sn
(2)求數(shù)列{bn}的通項(xiàng)公式bn及前n項(xiàng)和為Tn;
(3)記集合$A=\{n|2{S_n}(2-{T_n})≥λ(n+2),n∈{N^*}\}$,若集合A中有且僅有5個(gè)元素,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案